

RICE UNIVERSITY

By

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

APPROVED, THESIS COMMITTEE

HOUSTON, TEXAS

Konstantinos Mamouras (Chair)

Doctor of Philosophy

Robert Cartwright

Kaiyuan Yang

Agnishom Chattopadhyay

August 2024

Konstantinos Mamouras (Aug 5, 2024 09:16 CDT)
Konstantinos Mamouras

Kaiyuan Yang (Aug 6, 2024 22:04 CDT)

Robert Cartwright (Aug 8, 2024 09:54 CDT)
Robert Cartwright

Assistant Professor, Computer Science

Formally Verified Algorithms for Temporal Logic and Regular Expressions

Associate Professor, Electrical and
Computer Engineering

Professor, Computer Science

ABSTRACT

Formally Verified Algorithms for Temporal Logic and Regular Expressions

by

Agnishom Chattopadhyay

The behavior of systems in various domains including IoT networks, cyber-physical

systems and runtime environments of programs can be observed in the form of lin-

ear traces. Temporal logic and regular expressions are two core formalisms used to

specify properties of such data. This thesis extends these formalisms to enable the ex-

pression of richer classes of properties in a succinct manner together with algorithms

that can handle them efficiently. Using the Coq proof assistant, we formalize the

semantics of our specification languages and verify the correctness of our algorithms

using mechanically checked proofs. The verified algorithms have been extracted to

executable code, and our emperical evaluation shows that they are competitive with

state-of-the-art tools.

The first part of the thesis is focused on investigating the formalization of an

online monitoring framework for past-time metric temporal logic (MTL). We employ

an algebraic quantitative semantics that encompasses the Boolean and robustness

semantics of MTL and we interpret formulas over a discrete temporal domain. A po-

tentially infinite-state variant of Mealy machines, a kind of string transducers, is used

as a formal model of online monitors. We demonstrate a compositional construction

from formulas to monitors, such that each monitor computes (in an online fashion)

the semantic values of the corresponding formula over the input stream. The time

taken by the monitor to process each input item is proportional to O(∣φ∣) where ∣φ∣

is the size of the formula, and is independent of the constants that appear in the for-

mula. The monitor uses O(m) space where m is the sum of the numerical constants

that appear in the formula.

The latter part of the thesis is focused on regular expressions. Regular expres-

sions in practice often contain lookaround assertions, which can be used to refine

matches based on the surrounding context. Our formal semantics of lookarounds

complements the commonly used operational understanding of lookaround in terms

of a backtracking implementation. Widely used regular expression matching engines

take exponential time to match regular expressions with lookarounds in the worst

case. Our algorithm has a worst-case time complexity of O(m ⋅ n), where m is the

size of the regex and n is the size of the input string. The key insight is to evaluate

the lookarounds in a bottom-up manner, and guard automaton transitions with or-

acle queries evaluating the lookarounds. We demonstrate how this algorithm can be

implemented in a purely functional manner using marked regular expressions. The

formal semantics of lookarounds and our matching algorithm is verified in Coq.

Finally, we investigate the formalization of a tokenization algorithm. Tokenization

is the process of breaking a monolithic string into a stream of tokens. This is one of

the very first steps in the compilation of programs. In this setting, the set of possible

tokens is often described using an ordered list of regular expressions. Our algorithm

is based on the simulation of the Thompson NFA of the given regular expressions.

Two significant parts of the verification effort involve demonstrating the correctness

of Thompson’s algorithm and the computation of ε-closures using depth-first search.

For a stream of length n and a list of regular expressions of total sizem, our algorithm

finds the first token in O(m ⋅ n) time, and tokenizes the entire stream in O(m ⋅ n2)

time in the worst-case.

Acknowledgments

The work presented in this thesis would not have been possible without the guidance

of my advisor, Dr. Konstantinos Mamouras. Throughout the duration of my graduate

studies, Dr. Mamouras has been very generous with his time and patience, and has

played a major role in shaping the work presented in the next few chapters. It has

been a privilege to work with a researcher with both very wide and very deep knowlege

of computer science, ranging from obscure results in algorithms and formal languages

to the low level tricks that make blazingly fast implementations possible.

I want to thank the two other members of my thesis committee, Dr. Robert

Cartwright and Dr. Kaiyuan Yang, for taking the time to evaluate my work and

attend my presentations. I greatly enjoyed working on the illuminating assignments

in Dr. Cartwright’s Priciples of Programming Language class, and later assisting him

in teaching his class on functional programming. With Dr. Yang’s team, I had the

chance to work on a project that was at the intersection of hardware design and

automata theory.

I am grateful to be able to collaborate with my labmates and friends Zhifu Wang,

Lingkun Kong, Alexis Le Glaunec and Angela. Many of the projects presented in this

thesis have benefitted from their technical expertise or the insightful discussions I had

with them. Angela has helped me with the experimental evaluation of algorithms on

a number of occassions. It is always comforting to have company, especially when

research is stressful.

I acknowledge the support of innumerable other people who have helped with

my research in direct or indirect ways. These include (but are not limited to) the

researchers who have made their tool and code available online, the authors of the

iv

many helpful tutorials and blog posts, and the users on certain mailing lists and

Stack Exchange forums who have answered my questions. I also want to thank our

department and Dr. Tracy Volz for organizing weekly seminars where I had the chance

to learn about the research conducted by my peers.

I want to thank my friend Sohail Dasgupta for being a great roommate. His

nihilistic sense of humor has always been a great source of comfort, and has taught

me to not take life too seriously. I want to thank my parents Rochana and Himadri

Chattopadhyay for their unwavering support and care for my health and well being

throughout. I want to thank my brother Amartyanil Chattopadhyay for his company

and the great conversations we have shared.

Contents

Abstract i

Acknowledgments iii

List of Illustrations viii

List of Tables x

1 Introduction 1

1.1 Temporal Logic . 3

1.2 Regular Expressions . 4

1.3 Contributions . 6

1.3.1 Online Monitoring for Metric Temporal Logic 6

1.3.2 Regular Expressions with Lookarounds 7

1.3.3 Tokenization using Thompson’s Algorithm 8

1.3.4 Other Related Contributions . 9

2 Online Monitoring for Metric Temporal Logic 10

2.1 Introduction . 10

2.2 Metric Temporal Logic . 14

2.2.1 Lattices . 15

2.2.2 Syntax and Semantics . 16

2.3 The Monitoring Problem . 19

2.3.1 Monitors as Mealy Machines . 19

2.3.2 Monitor Combinators . 21

2.4 Extraction and Experiments . 37

2.5 Related Work . 42

vi

3 Matching Regular Expressions with Lookarounds 47

3.1 Introduction . 47

3.2 Overview of the Algorithm . 50

3.3 Lookaround Semantics . 53

3.3.1 Relationship to PCRE Semantics. 57

3.4 Equational Reasoning . 57

3.5 Oracles for Lookaround Assertions . 63

3.5.1 Oracle Strings and Oracle Regular Expressions 63

3.5.2 Choosing appropriate oracle valuations 68

3.6 Purely Functional Matching of Oracle Expressions 72

3.6.1 Operations on Marked Expressions 75

3.6.2 Caching final and nullable for Marked Expressions 79

3.6.3 Consuming Oracle Strings . 82

3.7 Efficient Layerwise Matching . 86

3.7.1 Computing Tapes . 86

3.7.2 Matching Algorithm . 87

3.7.3 Leftmost Longest Match Extraction 91

3.8 Experiments . 93

3.9 Related Work . 96

4 Tokenization using Thompson’s Algorithm 100

4.1 Introduction . 100

4.2 Regular Expressions and Automata . 102

4.2.1 Non-deterministic Finite Automata 104

4.3 Thompson’s Construction . 106

4.3.1 Using Arrays to Represent the Transition Function 110

4.4 Simulating NFAs using Depth-First Search 112

4.4.1 Depth-First Search . 115

vii

4.5 Maximal Munch Tokenization . 122

4.5.1 Pre-computing results of Depth-First Search 132

4.6 Experimental Results . 132

4.7 Related Work . 136

5 Conclusion 141

5.1 Future Work . 142

Bibliography 145

Illustrations

2.1 Summary of Mealy Combinators . 24

2.2 The toMonitor function . 25

2.3 Establishing correctness of mAtomic. 26

2.4 The mBinOp combinator . 27

2.5 Delay monitors. 28

2.6 Temporal Folds . 30

2.7 Monitoring Since . 31

2.8 Invariants for aggQueue . 32

2.9 Extracted OCaml Code . 38

2.10 Microbenchmarks: Formulas with large constants 41

2.11 Throughput for formulas from the Timescales benchmark 41

3.1 Definition of the satisfaction relation ⊧ relating a string w ∈ Σ∗, a

window [i, j] with 0 ≤ i ≤ j ≤ ∣w∣, and a regular expression r ∈ LReg,

possibly with lookarounds. 55

3.2 Operations on MReg expressions . 76

3.3 The init and shift functions for MReg . 78

3.4 Operations on CMReg expressions . 81

3.5 Definition of eval, which computes ⟨abstract(r),oval(r,w)⟩ 88

3.6 Performance of our extracted Haskell code (extracted), the Lean

tool in [1] (lean), PCRE (pcre), and Java (java) on the three

different regex families DNLA, NX, and ND 94

ix

4.1 Thompson’s Construction . 107

4.2 Axioms for the BArray type . 111

4.3 Depth First Search Algorithm using a fuel parameter 118

4.4 Invariants for the Lexer Configuration 125

4.5 Algorithm for Computing the first token using the maximal-munch

principle . 129

4.6 Performance of Alexee, Coqlex, Verbatim, Flex, and Ocamllex on

JSON tokenization . 133

4.7 Two microbenchmarks comparing Alexee, Verbatim and Coqlex . . . 135

Tables

2.1 A run of the sliding window algorithm that aggregates the last 3

elements. The elements a, b, c, d, e are fed in, incrementally. We use ∣

as a separator in l to indicate the old and the new parts of the queue.

Note that the contents of l itself are not stored. 35

3.1 Matching the ORegex Q+(v)a ⋅ a∗ ⋅ bQ+(v) on the ostring ⟨aab,1100⟩

using Marked Regular Expressions . 84

3.2 Families of Regular Expressions in Experiments 94

4.1 Evolution of the lexer configuration for ⟨ba + aa, aab∗⟩ on aabaa 130

1

Chapter 1

Introduction

Complex automated systems can be seen in various domains including IoT networks,

cyber-physical systems, and even runtime environments of programming languages.

Designers of these systems need to have confidence in their correctness. In practice,

engineers can be more confident about their software via simulations and system-

atic testing. Our research is based on the premise that rigorous and well-developed

mathematical frameworks are key to the development of sound toolchains.

In a more rigorous setting, software artifacts (including source code and binaries)

must be coupled together with formal specifications that describe their intended be-

havior. When choosing a formal framework for specification, one has to take into

account a large number of factors. Generally, they involve (1) the abstractions neces-

sary to describe the intricacies of the system and (2) the availability of capable tools

and algorithms that can manipulate objects in this framework. Thus, it is helpful to

judge such a framework in light of these two factors.

If the system is reasonably sized, an approach to verification would be model

checking. Usually, this refers to modeling the system as a transition system and then

checking whether any paths in the transition system form a trace contradicting the

specification using automata-theoretic techniques. (See, for example, the papers [2],

[3] or [4]). Another approach is to verify the algorithms using proof assistants such

as Coq, Lean, or HOL/Isabelle. Within a proof assistant, one can express correctness

properties in a very expressive logic, state the algorithms as mathematical functions,

2

and then show that the functions satisfy the properties. While the formulas and

functions expressible in these systems are vastly more expressive, the verification

process is largely manual. A discussion about the various proof assistants can be

found in the survey by Ringer et al. [5].

Static verification techniques like these, however, may not always be feasible.

These techniques do not necessarily scale well with the complexity of the system.

Additionally, they may depend on assumptions that are made in the process of mod-

eling the system. With theorem proving, additional layers of complexity are brought

into the development process as the proofs need to be developed and maintained in

tandem. This means that monitors, which can report events to human supervisors,

need to be deployed.

The complexity of the landscape of scenarios to which monitors need to be adapted

is enormous. In some cases, it is acceptable to audit traces from the system once it

has completed execution, but often it may be necessary to monitor the behavior of

the system in real time. In such cases, the monitors may only have extremely limited

resources (e.g., when executing on a microcontroller) and may need to have a high

throughput. In addition, monitors may need to respond to signals that involve uncer-

tainty, and different events may require different responses. In many applications, the

challenge of monitoring a system may arise from the heterogeneity of its components,

or from being distributed over various locations.

Because of this complexity, the mainstream approach is to program monitors

manually on a case-by-case basis for each application. However, this approach can also

be prone to programming errors and scales poorly with respect to the complexity of

the system. This is why we focus on formalisms that are grounded in mathematically

sound theory and enable monitor construction across a wide range of applications.

3

Two formalisms that are used in the building blocks of such tools are temporal

logic and regular expressions. Researchers have studied temporal logic-based specifi-

cations for monitoring in a number of applications, including Automatic Transmission

Control Systems [6], Artificial Pancreas Control Systems [7], and even Engineering

Education Systems [8]. Besides being used widely for text processing applications,

regular expressions have also been used to inspect network packets for intrusion detec-

tion [9, 10], to detect malware signatures [11] and even to discover motifs in biological

sequences [12].

1.1 Temporal Logic

Linear Temporal Logic (LTL) was introduced by Pnueli [13] as a formalism for speci-

fying properties of reactive systems. Using temporal logic, one can specify properties

of a trace, which is a summary of the execution (or behavior) of the system over time.

Temporal logic enables the specification of obligations (or prerequisites) in the future

(or past) depending on the current state of the system via temporal modalities.

Various extensions of this logic have received attention in the formal methods

community in order to express properties of cyber-physical systems (see [14] for a

survey). The metric extension of temporal logic (MTL) [15] allows the annotation of

temporal modalities with time intervals within which the witnessing event must occur.

Signal Temporal Logic (STL) [16] allows forming temporal formulas over real-valued

signals.

Generally, temporal logic is stated in terms of future-oriented temporal modalities

and interpreted over infinite traces. This is because a large part of the literature is

focused on model-checking (i.e, static verification) of reactive systems to determine

if any execution trace may have a violation in the indefinite future. However, in the

4

context of runtime verification, we are interested either in monitoring existing traces

(called offline monitoring) collected from executions of the system in the past, or

monitoring the system in real time while it is executing (called online monitoring).

Thus, in this context, we are only able to view a finite prefix of the trace at any

given time. This thesis focuses on a past-time-only fragment of temporal logic, but

our later work has considered extensions to finite-horizon future time modalities in

[17, 18].

1.2 Regular Expressions

Since their introduction in the 1950s, regular expressions [19] and finite-state au-

tomata [20] have found applications in numerous domains to describe patterns over

sequences. They have been used for the lexical analysis of programs [21] during com-

pilation, the search of words and patterns in text editors [22], and bibliographic search

[23]. Regular patterns are also used in network security [10] to search for intrusion

signatures in network traffic, in bioinformatics [12] for describing protein, RNA, or

DNA sequences, and in runtime verification [14] for specifying safety properties.

Classical regular expressions involve constructs for nondeterministic choice r1+r2,

concatenation r1 ⋅ r2, and Kleene’s star r∗ (repetition of r zero or more times). In

practice, the syntax of regular expressions is often extended with more constructs that

offer convenience, such as character classes for describing sets of letters/symbols (e.g.,

[ab] and [0−9]), the construct r? for indicating that the pattern r is optional, and

Kleene’s plus r+ (repetition of r at least once). The construct of bounded repetition,

which is written as r{m,n}, describes the repetition of r from m to n times, can

be translated using concatenation and ? but makes regular expressions exponentially

more succinct. Certain extensions of regular expressions used in practice also extend

5

their expressivity beyond regular patterns. For instance, the use of backreferences can

ensure that the exact substring is matched in multiple occurrences. As an example,

the expression r1/1 matches a string of the form w ⋅w where w matches r1. Bounded

repetition of the form r{m,n} is a common occurrence in practice, which succinctly

encodes repeated concatenation. Our work in [24] discusses the notion of counter-

unambiguity, which can be viewed as the criteria to determine if simulating such

a repetition using a numerical counter would be sound. In [25], the authors have

examined certain other cases in which bounded repetition can be matched efficiently

(in linear time-per-character) using a model of finite-state automata augmented with

bit vectors. These bit vector automata have also inspired the BVAP architecture [26]

for efficient hardware-based regex matching.

The focus of this thesis is regular expressions with lookaround assertions, which

goes beyond classical regular expressions by allowing one to describe not only a pat-

tern to search for, but also the context in which the pattern should appear. The

lookaround assertions include lookaheads and lookbehinds. A lookahead asserts that

the text that lies ahead (i.e., in the “future” relative to the current position) matches

a given pattern, while a lookbehind asserts that the text that lies behind (i.e., in the

“past”) matches a given pattern. We also discuss the application of regular expres-

sions to tokenization. Tokenization is the process of splitting a string into a stream of

tokens. This is often an important step in the compilation of programs and in natural

language processing. It is common in such applications to describe legal tokens using

regular expressions.

6

1.3 Contributions

This thesis investigates the formalization of several efficient algorithms for temporal

logic and regular expressions. The algorithms described in the subsequent chapters

have been formally verified in Coq, and empirical evaluation suggests their perfor-

mance is competitive. The main contributions of this thesis include:

1. A verified monitoring algorithm for temporal logic (Chapter 2, extending work

published in [27])

2. An efficient algorithm for matching regular expressions with lookarounds (Chap-

ter 3, extending work published in [28])

3. A verified tokenization procedure based on Thompson’s Algorithm (Chapter 4)

1.3.1 Online Monitoring for Metric Temporal Logic

The contributions of Chapter 2 are as follows:

• We present a compositional construction of online monitors for specifications

described in past-time metric temporal logic (MTL), interpreted over a dis-

crete temporal domain. Our approach involves expressing the given formula

using a family of logical and temporal connectives, and then using an inductive

construction to replace each connective with a combinator.

• We employ an algebraic quantitative semantics using bounded distributive lat-

tices that encompasses the Boolean and real-valued (robustness) [29] semantics

of MTL.

• Our algorithm is verified correct in Coq, where we model online monitors using

(infinite-state) Mealy machines, a form of stateful transducer which produces

7

an output for each input. Our formalization also includes the lattice-based

semantics of MTL, along with identities that are essential for our compositional

construction.

• We empirically evaluate the performance of our algorithm and compare it with

Reelay [30], a state-of-the-art monitoring tool.

• The time taken by the monitor to process each input item is proportional to

O(∣φ∣) where ∣φ∣ is the number of connectives and atomic propositions used in

the formula, and is independent of the constants that appear in the formula.

The monitor uses O(m) space where m is the sum of the numerical constants

that appear in the formula.

1.3.2 Regular Expressions with Lookarounds

The contributions of Chapter 3 are as follows:

• We present and formalize a context-dependent semantics for regular expres-

sions with lookarounds. This semantics complements existing definitions of the

lookaround constructs that are operational, i.e., defined in terms of a backtrack-

ing matching algorithm.

• Using our formal semantics for lookaround, we prove that regular expressions

with lookaround satisfy the equivalence properties of Kleene algebra [31]. More-

over, we establish a number of equivalences involving lookaround that can be

used for simplifying patterns.

• We propose a novel efficient algorithm for matching lookaround expressions in

O(m ⋅n) time, where m is the size of the regex and n is the length of the input

8

string. Existing regex matching engines that support lookaround assertions are

based on backtracking, and therefore take exponential time in the worst case.

• Our algorithm is purely functional. The key technical abstraction used in the

algorithm is the notion of regular expressions with oracle queries. We extend

the technique of marked regular expressions [32, 33] to match these expressions.

• We conduct experiments to evaluate the performance of our implementation

against PCRE [34], and java.util.regex of the Java standard library [35] and

also another verified tool [1].

1.3.3 Tokenization using Thompson’s Algorithm

The contributions of Chapter 4 are as follows:

• We verify Thompson’s construction for regular expressions in Coq. The con-

struction produces an NFA represented as an array. The NFA has O(m) states,

where m is the size of the regular expression, and each state has at most 2

outgoing edges.

• We develop in Coq the machinery to reason about graph reachability and verify

depth-first search using it. Given a graph with n vertices and m edges, our

depth-first search algorithm has a time complexity of O(n +m).

• We propose an approach towards using mutable arrays in OCaml code extracted

from Coq, which may be helpful when arrays are manipulated in a ‘linear’

manner. This approach is helpful in maintaining the linear time complexity of

depth-first search.

9

• We use the techniques above to implement a maximal munch lexer. Given a

list of regular expressions the sum of whose size is m, and a string of length n,

our lexer finds the first token in O(m ⋅ n) time, and tokenizes the entire string

in O(m ⋅ n2) time in the worst case.

• We observe that our lexer is twice as fast as Coqlex for a realistic JSON to-

kenization benchmark. Coqlex is exponentially slower on certain adversarially

chosen inputs.

1.3.4 Other Related Contributions

In addition to the above contributions, the author has also been a part of the following

works, which are closely related but not included in this thesis:

• In [36], the monitoring algorithm presented in Chapter 2 is extended to the

algebraic setting of semirings. In [17], a monitoring algorithm for the continuous

time setting is presented.

• In [24], the matching problem for the extension of regular expressions with

bounded repetition (e.g., r{m,n}) is discussed. The key challenge here is in

understanding when multiple non-deterministic runs of an NFA equipped with

counters can be simulated together using a single numeric counter.

• Given a string and a regular expression, there may be multiple substrings that

match the regular expression. Two popular disambiguation policies for selecting

the substring are the longest-leftmost match (POSIX) and the greedy match

(PCRE) policies. In [37], we discuss when the two disambiguation policies

agree.

10

Chapter 2

Online Monitoring for Metric Temporal Logic

2.1 Introduction

Verifying cyber-physical systems statically is usually infeasible at large scales, and

may require making assumptions about the behavior of the environment. In contrast,

runtime verification is a lightweight technique for checking that a system exhibits

the desired behavior. It is often performed in an online fashion, which means that

the execution trace of the system is observed as it is being generated. This trace

typically consists of one or more signals and event streams. A monitor program runs

in parallel with the system, consumes the system trace incrementally, and outputs at

every step a value that summarizes the current state of the system. This value can be

a Boolean indication of whether an interesting event or pattern has been identified,

or it can contain richer quantitative information. There is a substantial amount of

existing work on formalisms for specifying monitors, as well as on algorithms for their

efficient execution.

Temporal patterns are often specified using logical formalisms. Linear Temporal

Logic (LTL) is one such widely utilized formalism which admits efficient algorithms.

It is common to constrain the occurrence of temporal patterns using time intervals,

which is a feature that gives rise to an extension of LTL called metric temporal

logic (MTL) [15]. Since many applications in the domain of cyber-physical systems

frequently deal with comparison between numerical signals, Signal Temporal Logic

11

(STL) [38], an extension of LTL with predicates allowing comparison with numerical

values, is widely used.

While temporal logic facilitates the specification of temporal properties, it is

equally important to have accompanying algorithms. The notion of a monitor is

an algorithm that analyzes given traces for a specific temporal property. In an offline

setting, the trace is available in its entirety. In contrast, online monitors are meant

to be attached to running systems, so that they may report interesting (or critical)

events as they happen, potentially so that a supervisor can act in real time. Thus,

they must analyze system traces incrementally (fragment by fragment) as they evolve,

and this must be done efficiently: each update should be handled quickly.

The standard semantics for temporal logic is qualitative, which means that moni-

tors classify traces only in a binary pass/fail manner. However, this is not sufficiently

informative for certain applications: some violations can be more serious than oth-

ers, and on the other hand, some cases of satisfaction could be close to the edge of

failure. In some cases, we may be able to take corrective action if we could tell that

the system is approaching a potential violation. Indeed, in realistic systems with

continuous dynamics, some degree of tolerance must be allowed since every value is

accurate only up to the extent of measurement errors. This encourages us to consider

quantitative semantics for our formalism, so that we can quantify how robustly the

observed behavior fits the desired specification [29].

The variant of MTL that we consider in this chapter is interpreted over a discrete

temporal domain and is a past-time-only fragment of the logic. In the setting of

online monitoring we need to reactively respond to the patterns in what we have seen

so far. So, using a past-time fragment makes sense and provides a clean semantics.

Online monitoring with future-time temporal connectives has been considered, but

12

these can give rise to semantic complications [39].

Using the interactive theorem prover Coq [40], we formalize the semantics of our

temporal logic. The implementation of our monitoring algorithms are done within

Coq, and a proof of correctness is given. Formal proofs, like the ones described in

Coq, are thoroughly rigorous and machine-checkable. This gives us confidence in the

correctness of our implementations. With the extraction mechanism of Coq, we can

obtain executable OCaml code directly from our verified implementation.

It would be difficult to deploy an OCaml-based implementation on an embedded

device in a cyber-physical system due to scarcity of runtime resources. However, our

verified monitor could be used as a part of the development-level environment for

such systems. An example of such an activity is the use of runtime monitoring for

the purpose of falsification (see [41]). Our verified online monitor could also be used

in any scenario where offline monitoring can be used. Another utility of our monitor

is that it could be used as an oracle for differentially testing the correctness of other

monitors.

As mentioned earlier, a strong motivation for using a quantitative semantics is

to quantify how robustly a signal satisfies a given specification in view of potential

perturbations. One way to do so for STL specifications is to interpret formulas

over real numbers and interpret the logical connectives ∨ and ∧ as max and min

respectively [42]. In our work, we use a slightly more general framework, interpreting

our formulas over arbitrary bounded distributive lattices. This abstract algebraic

framework enables a simpler verification approach and, as we will discuss later, does

not hurt the performance of our algorithms.

In our formalization, we model online monitors as a potentially infinite-state vari-

ant of Mealy machines. They are abstract machines whose state evolves as fragments

13

of a trace are consumed. Each state of the machine is associated with a value that

represents the current output of the monitor. We follow a compositional approach for

our implementation and proofs. This is done with the help of combinators, which are

constructs that compose Mealy machines in different ways (possibly with other data

structures) so that their behaviors can be composed or combined. Corresponding

to each Boolean or temporal connective in our specification language, we identify a

combinator on Mealy machines which implements the desired behavior.

We observe that formulas in our temporal logic can be rewritten so that only a

few combinators are necessary: (1) combinators which combine the output of Mealy

machines running in parallel by applying a binary operation on their respective out-

puts, (2) combinators which compute a running aggregate on the results of a Mealy

machine, (3) combinators which compute running aggregates over sliding windows,

and (4) combinators which withhold the results of a machine until a given number of

updates. We will see that most of these can be implemented in a straightforward way.

Applying a binary operation to the current output values of two running machines

can be done with a stateless construction. Computing running aggregates efficiently

can be achieved by storing the aggregate of the trace seen so far. In order to with-

hold the results of a given machine, we can simply store them in a queue of a fixed

length. Computing aggregates over sliding windows is slightly trickier. This is usually

achieved with an algorithm that maintains monotonic wedges [43]. However, this as-

sumes that the semantic values are totally ordered, which is not necessarily true in our

setting of lattices. Instead, we use an algorithm that is inspired by the well-known

implementation of a queue data structure using two stacks, popular in functional

programming. A variant of this algorithm can be used for computing sliding-window

aggregates for any associative operation in a way that every execution step of the

14

monitor needs O(1) amortized time.

Our Coq formalization and extracted code are available in a public GitHub Repos-

itory∗.

Chapter Outline. In Sect. 2.2, we first introduce lattices and then present the

syntax and semantics of our temporal specification language. In Sect. 2.3, we give

a formal definition of Mealy machines, present a collection of Mealy combinators,

and discuss in detail their implementation. In Sect. 2.4, we discuss the extraction of

executable OCaml code from the Coq scripts, use it as a verification oracle and we

compare its performance against the monitoring tool Reelay [30]. Finally, in Sect. 2.5,

we discuss several different quantitative semantics for Signal Temporal Logic, various

algorithmic approaches to online monitoring, and we also give a brief overview of

related efforts to produce formally verified monitors.

2.2 Metric Temporal Logic

In this section, we review metric temporal logic (MTL), which will be the formal-

ism that we consider here for specifying quantitative properties. We use bounded

distributive lattices as semantic value domains for our logic. While this abstract al-

gebraic setting is not usually how MTL is interpreted, we will see that the standard

qualitative (Boolean) and quantitative (robustness) semantics can be obtained simply

by choosing the appropriate lattice.

∗https://github.com/Agnishom/lattice-mtl

https://github.com/Agnishom/lattice-mtl

15

2.2.1 Lattices

A lattice is a partial order in which every two elements have a least upper bound and

a greatest lower bound. We will use an equivalent algebraic definition.

Definition 2.1. A lattice is a set A together with associative and commutative binary

operations ⊓ and ⊔, called meet and join respectively, that satisfy the absorption laws,

i.e, x ⊔ (x ⊓ y) = x and x ⊓ (x ⊔ y) = x for all x, y ∈ A.

Let A be a lattice. Using the absorption laws it can be shown that ⊔ is idempotent:

x ⊔ x = x ⊔ (x ⊓ (x ⊔ x)) = x for every x ∈ A. Similarly, it can also be shown that ⊓ is

idempotent. Define the relation ⊑ as follows: x ⊑ y iff x ⊔ y = y for all x, y ∈ A. The

relation ⊑ is a partial order. It also holds that x ⊑ y iff x ⊓ y = x. For all x, y ∈ A, the

element x⊔ y is the supremum (least upper bound) of {x, y} and the element x⊓ y is

the infimum (greatest lower bound) of {x, y} w.r.t. the order ⊑.

Definition 2.2. A lattice A is said to be bounded if there exists a top element ⊺ ∈ A

and a bottom element � ∈ A such that � ⊔ x = x and x⊓ ⊺ = x (equivalently, � ⊑ x ⊑ ⊺)

for every x ∈ A.

Let A be a bounded lattice. It is easy to check that x ⊔ ⊺ = ⊺ and � ⊓ x = � for

every x ∈ A. For a finite subset X = {x1, x2, . . . xn} of a bounded lattice, we write ⊔X

for x1 ⊔x2 ⊔⋯⊔xn and similarly ⊓X for x1 ⊓x2 ⊓⋯⊓xn. Moreover, we define ⊔∅ to

be � and ⊓∅ to be ⊺. So, ⊔X is the supremum of X and ⊓X is the infimum of X.

Definition 2.3. A lattice A is said to be distributive if x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z)

and x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z) for all x, y, z ∈ A.

Example 2.4. Consider the two-element set B = {⊺,�} of Boolean values, where ⊺

represents truth and � represents falsity. The set B, together with conjunction as

meet and disjunction as join, is a bounded and distributive lattice.

16

Example 2.5. The set R of real numbers, together with min as meet and max as

join, is a distributive lattice. However, (R,min,max) is not a bounded lattice. It is

commonplace to adjoin the elements ∞ and −∞ to R so that they serve as the top

and bottom elements respectively.

2.2.2 Syntax and Semantics

We fix a set D of data items. We denote by Dω the set of infinite sequences over D,

which can also be thought of as functions of type N → D. We call members of Dω

traces. We also consider non-empty strings over D, denoted D+, which we call (trace-

)prefixes. Given a trace σ, we use σ∣n to denote the finite string σ(0)σ(1)⋯σ(n).

We also fix a bounded distributive lattice V, whose elements are quantitative truth

values that represent degrees of truth or falsity. Given a formula, our quantitative

semantics will associate a truth value (from V) with each position of the trace. The

set Φ of temporal formulas that we consider is given by the following grammar:

φ,ψ ∶∶= f ∶ D→ V ∣ φ ∨ ψ ∣ φ ∧ ψ ∣ PIφ ∣ HIφ ∣ φ SI ψ ∣ φ SI ψ,

where I is an interval of the form [a, b] or [a,∞) with a, b ∈ N. For every temporal

connective X ∈ {P,H,S,S}, we will write Xa as an abbreviation for X[a,a] and X as

an abbreviation for X[0,∞). We interpret formulas from Φ over traces Dω at specific

positions using the robustness interpretation function ρ ∶ Φ × Dω ×N → V, defined as

follows:

17

ρ(f, σ, i) = f(σ(i))

ρ(φ ∨ ψ,w, i) = ρ(φ,σ, i) ⊔ ρ(ψ,σ, i)

ρ(φ ∧ ψ,σ, i) = ρ(φ,σ, i) ⊓ ρ(ψ,σ, i)

ρ(PIφ,σ, i) = ⊔
j∈I
i−j≥0

ρ(φ,σ, i − j)

ρ(HIφ,σ, i) = ⊓
j∈I
i−j≥0

ρ(φ,σ, i − j)

ρ(φ SI ψ,σ, i) = ⊔
j∈I
i−j≥0

(ρ(ψ,σ, i − j) ⊓ ⊓
k<j

ρ(φ,σ, j − k))

ρ(φ SI ψ,σ, i) = ⊓
j∈I
i−j≥0

(ρ(ψ,σ, i − j) ⊔ ⊔
k<j

ρ(φ,σ, j − k))

Note that ρ(Paφ,σ, i) = � and ρ(Haφ,σ, i) = ⊺ whenever a > i. The semantics of ∧,

H and S can be obtained from that of ∨, P and S by switching the roles of ⊓ and ⊔.

Thus, they will be referred to as dual operators.

Since we are interpreting formulas over discrete traces, our logic is expressively

equivalent to LTL with a “Previous” operator. In other words, temporal connectives

(including S and S; see Lemma 2.14) with bounded intervals can be rewritten in

terms of multiple compositions of the Previous operator instead. Also, note that our

temporal logic does not include negation. However, this does not limit expressiveness

as we discuss in the examples below.

Example 2.6. Continuing from Example 2.4, we choose D to be Bk and we set V

to B. The set of functions from Bk → B considered may be restricted to projections

πi(b1, . . . bi, . . . bk) = bi and negated projections πi(b1, . . . bi, . . . bk) = bi. This gives us

the standard qualitative semantics for metric temporal logic. Formulas with negation

18

can be expressed equivalently as formulas in negation normal form (NNF) in a fairly

standard way by pushing negation inside while interchanging operators for their dual

operators.

It can be illustrative to examine the interpretations of the temporal operators

in this specific context, since the lattice-based case presented in this chapter is a

straightforward generalization. The operators P, H and S could be informally read as

‘in the past’, ‘historically’ and ‘since’. The formula P[a,b]p holds at time t if p holds

at some time in the interval [t−b, t−a] (i.e, in the past of t). The formula H[a,b]p holds

at time t if p holds at every time in the interval [t−b, t−a] (i.e, was historically true).

The formula p S[a,b] q holds at time t if q holds at some time t′ where t − b ≤ t′ ≤ t − a

and p holds at every time in the interval (t′, t] (i.e, p was true since q was true).

Example 2.7. We can also express a past-time version of STL interpreted over

discrete time in this framework. To do so, take D = Rk. A qualitative semantics is

obtained by taking V to be B and restricting the functions to comparisons of the form

(r1, . . . , ri, . . . , rk) ↦ ri ∼ c where c ∈ R and ∼ ∈ {≤,≥,=}. A quantitative semantics

can be obtained by taking V to be R ∪ {∞,−∞} (as in Example 2.5) and considering

functions of the form (r1, . . . , ri, . . . , rk) ↦ ri−c or (r1, . . . ri . . . rk) ↦ c−ri. Even in the

quantitative setting, STL formulas with negation can be presented in our framework

by considering NNF, again by pushing negation inside while interchanging operators

for their dual operators and replacing ri − c with c − ri.

Our formalism is a past-time only logic. This means that the robustness value at

a point can be determined by the trace prefix up to that position. This idea can be

stated formally in the form of the following claim.

Lemma 2.8. Suppose σ, τ are traces such that σ∣n = τ ∣n for some n ∈ N. Then, for

19

any formula φ ∈ Φ and for every i ≤ n, ρ(φ,σ, i) = ρ(φ, τ, i).

This suggests a way to interpret formulas on trace-prefixes. Suppose w ∈ D+, and

σ ∈ Dω is some trace such that σ∣∣w∣ = w. Then, we define ρ(φ,w) = ρ(φ,σ, ∣w∣).

Lemma 2.8 implies that this definition does not depend on the specific choice of σ.

2.3 The Monitoring Problem

Monitoring is the processing of an input trace in order to detect specified patterns.

For quantitative properties, this could be thought of as applying a valuation function

on a trace. In an online setting, the trace is supplied to the monitor incrementally. To

elaborate, the monitor consumes fragments of the trace one at a time and the monitor

is required to evaluate the quantitative property on the trace prefix seen so far. Below,

we outline a compositional approach for monitoring quantitative properties denoted

by MTL formulas.

2.3.1 Monitors as Mealy Machines

We will use a variant of Mealy machines, a class of string transducers, as a formal

model of online monitoring algorithms.

Definition 2.9. Let A and B be sets. A Mealy machine with input items from A

and output values in B is a tuple (St,init,mNext,mOut) where St is a (possibly

infinite) set of states, init ∈ St is the initial state, mNext ∶ St×A→ St is a transition

function which transitions the state of the machine upon seeing an input from A, and

mOut ∶ St × A → B provides an output at the current state, given an element from

A. We write Mealy(A,B) for the set of all Mealy machines with inputs from A and

outputs from B.

20

While this is similar to the standard definition of Mealy Machines found in the

literature, we use an equivalent, co-inductive definition in our formalization. In the

co-inductive view (see [44]), the states are not explicitly expressed, but described

directly in terms of their extensional behavior.

CoInductive Mealy (A B : Type) : Type := {

mOut : A -> B;

mNext : A -> Mealy A B;

}.

The functions mNext and mOut denote the incremental update and output of the

machine, respectively, which consume traces element by element. We can extend

these functions to gNext and gOut to consume non-empty strings, more generally.

We can think of the function gOut as the quantitative property that the machine

associates with the given trace-prefix.

Definition 2.10. Let m ∈ Mealy(A,B). Then, gNext(m) ∶ A∗ → Mealy(A,B) is

defined by gNext(m,ε) =m and gNext(m,w ⋅ a) = mNext(gNext(m,w), a). We define

gOut(m) ∶ A+ → B by gOut(m,w ⋅ a) = mOut(gNext(m,w), a).

For a quantitative property of trace-prefixes, i.e, a function f ∶ D+ → V, we wish

to construct a Mealy machine that computes f . In particular, we are interested in

quantitative properties which arise as denotations of MTL formulas.

Definition 2.11. Let φ ∈ Φ and m ∈ Mealy(D,V). We say that the Mealy machine

m implements a monitor for φ if gOut(m,w) = ρ(φ,w) for all w ∈ D+.

Example 2.12. Following Definition 2.9, consider the machine m ∶ Mealy(V,V) with

states V (indicating that it stores one element of type V), initial state �, mOut(u, a) =

21

u and mNext(u, a) = a. It holds that gOut(m,v1) = � and gOut(m,v1v2) = v1,

gOut(m,v1v2v3) = v2, etc. The machine m implements a monitor for the formula

P1(v ↦ v) in the sense of Definition 2.11.

Stated formally, the monitoring problem for MTL is to find a translation function

toMonitor ∶ Φ → Mealy(D,V) so that given any φ ∈ Φ, toMonitor(φ) implements a

monitor for φ.

2.3.2 Monitor Combinators

Combinators are compositional constructs that let one define new machines in terms

of existing ones. Our approach towards solving the monitoring problem is to find

combinators that correspond to the temporal and Boolean connectives of MTL. With

these combinators, a monitor for a given formula can be specified by induction on

the structure of the formula. A similar approach for MTL with bounded future-time

connectives is considered in [45, 36]. The compositional construction of transducers,

called temporal testers, for temporal formulas has been studied in [46, 47, 48]. The

use of combinators for specifying more general computations for stream processing has

been considered in the design of the domain-specific languages StreamQRE [49] and

StreamQL [50]. Quantitative regular expressions (QREs) [51, 49] (see also [52] and

[53]) are particularly relevant. QREs have been used to specify complex algorithms for

medical monitoring [54, 55]. Moreover, the relationship between QREs and automata-

theoretic models with registers is investigated in [56, 57, 58].

Proceeding with the idea of compositional monitor construction, we identify the

key constructs that are necessary in achieving the expressive power of MTL. We say

that the formulas φ and ψ are equivalent, and we write φ ≡ ψ, if ρ(φ,σ, i) = ρ(ψ,σ, i)

for all traces σ ∈ Dω and positions i ∈ N.

22

Lemma 2.13. The following identities hold:

P[a,b]φ ≡ PaP[0,b−a]φ (2.1)

H[a,b]φ ≡ HaH[0,b−a]φ (2.2)

φ S[a+1,b] ψ ≡ H[0,a]φ ∧ Pa+1 (φ S[0,b−(a+1)] ψ) (2.3)

φ S[a+1,b] ψ ≡ P[0,a]φ ∨Ha+1 (φ S[0,b−(a+1)] ψ) (2.4)

P[a,∞)φ ≡ PaP[0,∞)φ (2.5)

H[a,∞)φ ≡ HaH[0,∞)φ (2.6)

φ S[a+1,∞) ψ ≡ H[0,a]φ ∧ Pa+1 (φ S[0,∞) ψ) (2.7)

φ S[a+1,∞) ψ ≡ P[0,a]φ ∨Ha+1 (φ S[0,∞) ψ) (2.8)

The proofs of the identities of Lemma 2.13 are straightforward. Proving the

identities involving S (or S) requires the distributivity axioms, which motivates the

need for considering distributive lattices.

Lemma 2.14. The following identities hold:

φ S[0,a] ψ ≡ (φ S ψ) ∧ P[0,a]ψ (2.9)

φ S[0,a] ψ ≡ (φ S ψ) ∨H[0,a]ψ (2.10)

Proof. We will only prove the first identity, since the second one can be proved by

dualizing the same argument. Let σ ∈ Dω be an arbitrary trace and n ∈ N a position.

We define si = ρ(φ,σ,n − i) and ti = ρ(ψ,σ,n − i) for every i ∈ N. Then, we have that

ρ(φ S[0,a] ψ,σ,n) = ⊔
i≤K

(ti ⊓⊓
j<i

sj)

ρ(φ S ψ,σ,n) = ⊔
i≤n

(ti ⊓⊓
j<i

sj) = ρ(φ S[0,a] ψ,σ,n) ⊔ ⊔
K<i≤n

(ti ⊓⊓
j<i

sj)

ρ(P[0,a]ψ,σ,n) = ⊔
i≤K

ti

23

where K = min(a,n). We have to prove that L = R ⊓Q, where L = ρ(φ S[0,a] ψ,σ,n),

R = ρ(φ S ψ,σ,n) and Q = ρ(P[0,a]ψ,σ,n). From K ≤ n we obtain that L ⊑ R. It also

holds that L ⊑ Q because ti ⊓⊓j<i sj ⊑ ti for every i ≤K. It follows that L ⊑ R⊓Q. It

remains to show that R ⊓Q ⊑ L. Since

R ⊓Q = (L ⊔ ⊔
K<i≤n

(ti ⊓⊓
j<i

sj)) ⊓Q

= (L ⊓Q) ⊔ ⊔
K<i≤n

(ti ⊓⊓
j<i

sj ⊓Q)

= (L ⊓Q) ⊔ ⊔
K<i≤n

⊔
k≤K

(ti ⊓ tk ⊓⊓
j<i

sj),

it suffices to establish that L⊓Q ⊑ L (which is true) and ti ⊓ tk ⊓⊓j<i sj ⊑ L for every

i and k with K < i ≤ n and k ≤ K. Since k < i, we conclude that ti ⊓ tk ⊓ ⊓j<i sj ⊑

tk ⊓⊓j<k sj ⊑ L.

Remark 2.15. In the qualitative setting, the identities of Lemma 2.14 are intuitively

clear, but they require a more careful argument in the quantitative setting. They

have been used and proven in [59] for the lattice (R,min,max), but the given proof

does not generalize to the class of lattices that we consider here. As we can see in the

proof of Lemma 2.14, there is a subtlety in dealing with the terms of ρ(φ S ψ,σ,n)

with index i =K + 1, . . . , n.

The first set of identities allows us to express P[●,●], S[●,●] in terms of P[0,●], S[0,●]

and P●. The second set of identities implies that S[0,●] can be replaced by S and P●.

Thus, the only additional constructs required in expressing the bounded temporal

operators are P● and P[0,●] (and their duals).

We present in Figure 2.1 a summary of the combinators that we will consider. Each

combinator can be thought of as the implementation of the corresponding Boolean or

temporal connective. The key observation is that this association between combina-

24

f ∶ D→ V
mAtomic f ∶ Mealy(D,V)

m ∶ Mealy(D,V) k ∶ N

mDelay k m ∶ Mealy(D,V)

m ∶ Mealy(D,V) k ∶ N

mDelay k m ∶ Mealy(D,V)

m1 ∶ Mealy(D,V) m2 ∶ Mealy(D,V)

mAndm1 m2 ∶ Mealy(D,V)

m1 ∶ Mealy(D,V) m2 ∶ Mealy(D,V)

mOrm1 m2 ∶ Mealy(D,V)

m1 ∶ Mealy(D,V) m2 ∶ Mealy(D,V)

mSincem1 m2 ∶ Mealy(D,V)

m1 ∶ Mealy(D,V) m2 ∶ Mealy(D,V)

mSincem1 m2 ∶ Mealy(D,V)

m ∶ Mealy(D,V)

mSometimem ∶ Mealy(D,V)

m ∶ Mealy(D,V)

mAlwaysm ∶ Mealy(D,V)

m ∶ Mealy(D,V) k ∶ N

mSometimeBounded k m ∶ Mealy(D,V)

m ∶ Mealy(D,V) k ∶ N

mAlwaysBounded k m ∶ Mealy(D,V)

Figure 2.1 : Summary of Mealy Combinators

tors on Mealy machines and connectives respect the implementation relation (Defini-

tion 2.11) between machines and formulas. E.g., if m is a monitor for φ, we expect

mSometimeBounded k m to be a monitor for P[0,k]φ.

The definition of the toMonitor function which constructs monitors from formu-

las is shown in Figure 2.2. As discussed, it proceeds by rewriting the formula into

the desired form and then replacing each temporal or Boolean connective with the

corresponding combinator. The main correctness claim for the monitor is stated as

follows:

Theorem toMonitor_correctness:

forall φ, implements (toMonitor φ) φ.

The proof of this theorem is done using induction on the structure of the formula.

Once the identities in Lemmas 2.13 and 2.14 are proven, this can be done using the

correctness properties of individual combinators.

Before we start describing each combinator in detail, we make some remarks about

the general organization of our implementation and formal proofs. There is a lot of

25

[f] = mAtomic f

[φ ∧ ψ] = mAnd [φ] [ψ] [φ ∨ ψ] = mOr [φ] [ψ]

[Pφ] = mSometime [φ] [Hφ] = mAlways [φ]

[P
[0,a]φ] = mSometimeBounded a [φ] [H

[0,a]φ] = mAlwaysBounded a [φ]

[Paφ] = mDelay a [φ] [Haφ] = mDelay a [φ]

[φ S ψ] = mSince [φ] [ψ] [φ S ψ] = mSince [φ] [ψ]

[P
[a,∞)φ] = [PaP[0,∞)φ] (a > 0) [H

[a,∞)φ] = [HaH[0,∞)φ] (a > 0)

[P
[a,b]φ] = [PaP[0,b−a]φ] (a > 0, a ≠ b) [H

[a,b]φ] = [HaH[0,b−a]φ] (a > 0, a ≠ b)

[φ S
[a+1,b] ψ] = [H[0,a]φ ∧ Pa+1(φ S

[0,b−(a+1)] ψ)] [φ S
[a+1,b] ψ] = [P[0,a]φ ∨Ha+1(φ S

[0,b−(a+1)] ψ)]

[φ S
[a+1,∞) ψ] = [H[0,a]φ ∧ Pa+1(φ S ψ)] [φ S

[a+1,∞) ψ] = [P[0,a]φ ∨Ha+1(φ S ψ)]

[φ S
[0,a] ψ] = [(φ S ψ) ∧ P

[0,a]ψ] [φ S
[0,a] ψ] = [(φ S ψ) ∨H

[0,a]ψ]

Figure 2.2 : The toMonitor function

symmetry among these combinators that can be leveraged for economy of effort. An

example is the presence of dual connectives. This is why in many cases we focus

on presenting these combinators in a slightly general way before instantiating them

specifically to Mealy(D,V). As discussed before, the correctness for each combinator

is phrased in terms of preserving the implementation relation – these theorems are

indexed with the suffix correctness. These theorems are proven via lemmas indexed

with the suffix result that characterize the most recent output of the Mealy machine

at some point in the computation. The proofs proceed by induction on the trace seen

so far. They require additional lemmas that establish invariants about the state of

a Mealy machine as it evolves during the computation. These latter lemmas are

indicated with the suffix state. These ideas are illustrated in the construction of

mAtomic in Figure 2.3.

26

CoFixpoint mAtomic {A B : Type} (f : A -> B) : Mealy A B :=

{| mOut x := f x;

mNext _ := mAtomic f; |}.

Lemma mAtomic_state {A B : Type} (f : A -> B) (l : nonEmpty A) :

gNext (mAtomic f) l = mAtomic f.

Lemma mAtomic_result {A B : Type} (f : A -> B) (l : nonEmpty A) :

gOut (mAtomic f) l = f (latest l).

Lemma monAtomic_correctness :

forall f, implements (monAtomic f) (FAtomic f).

Figure 2.3 : Establishing correctness of mAtomic.

Atomic Functions.

In order to lift functions f ∶ A→ V to Mealy(A,V), we define the mAtomic combinator,

as shown in Figure 2.3. Given a function f ∶ A → V, it defines a Mealy machine that

applies f to the latest input element. We use the lemma mAtomic state to describe

the evolution of the machine when an arbitrary stream prefix is fed. Using this, we

also prove mAtomic result, which describes the final output of the machine after

accepting an arbitrary stream prefix. The lemma titled mAtomic correctness estab-

lishes that mAtomic correctly translates atomic functions to corresponding monitors.

Pointwise Binary Operations.

In Figure 2.4, we define the combinator mBinOp that combines the output of two

given machines using a binary operation. By plugging in ⊔ and ⊓ as op, we can

use mBinOp to implement the ∨ and ∧ connectives, respectively. Like in the case

of mAtomic, the correctness of this combinator is proven by establishing appropriate

27

CoFixpoint mBinOp {A B C D : Type} (op : B -> C -> D)

(m : Mealy A B) (n : Mealy A C) : Mealy A D := {|

mOut (a : A) := op (mOut m a) (mOut n a);

mNext (a : A) := mBinOp op (mNext m a) (mNext n a);

|}.

Definition monAnd (m n : Mealy A Val) : Mealy A Val :=

mBinOp meet m n.

Lemma monAnd_correctness m1 m2 φ1 φ2 :

implements m1 φ1 -> implements m2 φ2

-> implements (monAnd m1 m2) (FAnd φ1 φ2).

Definition monOr (m n : Mealy A Val) : Mealy A Val :=

mBinOp join m n.

Lemma monOr_correctness m1 m2 φ1 φ2 :

implements m1 φ1 -> implements m2 φ2

-> implements (monOr m1 m2) (FOr φ1 φ2).

Figure 2.4 : The mBinOp combinator

28

Lemma delayWith_state (q : Queue) (m : Mealy A B) (l : nonEmpty A) :

forall initSeg, initSeg = (back q) ++ rev (front q)

-> forall k, k = length initSeg

-> forall stream, stream = (toList (gCollect m l)) ++ initSeg

-> forall lastSeg, lastSeg = firstn k stream

-> exists newFront newBack,

lastSeg = newBack ++ rev newFront

/\ length lastSeg = k

/\ gNext (delayWith q m) l

= delayWith (Build_Queue newFront newBack) (gNext m l).

Figure 2.5 : Delay monitors.

lemmas which describe the behavior of mBinOp with gNext and gOut. These let us

prove, in particular, that mAnd and mOr correctly implement formulas involving ∧ and

∨, respectively.

Delay Monitors.

We view the implementation of P● and H● as a mechanism that delays the output

of a Mealy Machine. For instance, the sequence ⟨ρ(P2φ,a1a2a3), ρ(P2φ,a1a2a3a4)⟩ is

same as ⟨ρ(φ,a1), ρ(φ,a1a2)⟩. These operators preserve the order of the outputs, but

delay them by a given constant.

This can be achieved using a queue maintained at a fixed length. For instance, to

implement Paφ, we maintain a queue of length a. Upon being given an input item

a ∈ D, we feed a to toMonitor(φ), enqueue the result and then return what we obtain

by dequeuing. This works since the dequeued element was the result of toMonitor(φ)

a turns ago. The queue needs to be initially filled with a instances of � (or ⊺ in the

29

case of Ha) since we have that ρ(Paφ,w) = � (or ρ(Haφ,w) = ⊺) when ∣w∣ > a.

Since Coq is based on a functional programming environment, functional lists are

the ordered collections that are the easiest for us to reason about and work with.

Functional lists are typically implemented via linked lists, which means that in order

to access the kth element of the list, one would have to traverse k links and would

spend O(k) time. This makes appending to the end of the list expensive. However,

obtaining or adding elements at the head (the beginning) of the list is straightforward.

Thus, these lists effectively behave as stacks and sometimes we refer to them as such.

We use the well-known technique of implementing a queue with two functional lists,

which we briefly discuss below.

A queue is represented by two lists front and rear. When an element is enqueued,

it is added to the head of the rear list. Thus, the rear list effectively stores the

elements of the queue in an order opposite to that in which they were enqueued.

When dequeuing an element is required, the elements of rear are reversed and placed

in the front (thus restoring the order), and the head of front is returned. As long

as front is non-empty, subsequent dequeues may be directly handled by returning

the head of front.

In our use case, the queue is maintained at a fixed length, say k, and every enqueue

is followed by a subsequent dequeue. Reversing rear into front takes time O(k).

However, we only need to do this every k turns, since front is filled with k items

whenever the reversal happens. Thus, every k turns, we do O(k) work and only O(1)

work is needed otherwise. This gives us an amortized time complexity of O(1).

We implement this idea in the delayWith combinator in Figure 2.5. The key

lemma required in proving the correctness of the delayWith combinator shows that

the queue maintained always stores the last k-many outputs of the submonitor. To

30

CoFixpoint mFold {A B : Type} (op : B -> B -> B)

(m : Mealy A B) (init : B) : Mealy A B := {|

mOut (a : A) := op init (mOut m a);

mNext (a : A) := mFold op (mNext m a) (op init (mOut m a)); |}.

Definition mSometime (m : Mealy A Val) : Mealy A Val :=

mFold join m bottom.

Definition monAlways (m : Mealy A Val) : Mealy A Val :=

mFold meet m top.

Figure 2.6 : Temporal Folds

formalize this, we define gCollect ∶ Mealy(A,B) ×D+ → V+ as

gCollect(m,a1a2⋯an) =

⟨gOut(m,a1),gOut(m,a2),⋯,gOut(m,a1a2⋯an)⟩.

We may now write the mentioned invariant as in delayWith state, which is estab-

lished by induction on the input stream.

Temporal Folds.

The unbounded operators P and H can be thought of as a running fold on the input

stream, since ρ(Pφ,w ⋅ a) = ρ(Pφ,w) ⊔ ρ(φ,w ⋅ a) (and similarly for H). Thus, to

evaluate these operators in an online fashion, we only need to store the robustness

value for the trace seen so far. For P (resp., H), the robustness of the current trace

can then be obtained by computing the join (resp., meet) of the current value and the

stored one. In Figure 2.6, mAlways (resp., mSometime) computes the robustness values

corresponding to the H (resp., P) connectives by computing the meet (resp., join) of

31

CoFixpoint sinceAux (m1 m2 : Mealy A Val) (pre : Val) : Mealy A Val :=

{| mOut (a : A) := (mOut m2 a) ⊔ (pre ⊓ (mOut m1 a));

mNext (a : A) :=

sinceAux (mNext m1 a) (mNext m2 a)

((mOut m2 a) ⊔ (pre ⊓ (mOut m1 a)))

|}.

Definition monSince (m1 m2 : Mealy A Val) : Mealy A Val :=

sinceAux m1 m2 bottom.

Figure 2.7 : Monitoring Since

the current value with the stored one. Their proof of correctness is a straightforward

induction on the trace-prefix, using the incremental equation involving the operator.

Using the following identity, we may also view the computation of S as a temporal

fold, i.e, the robustness for φSψ may be calculated incrementally by only storing the

robustness value for the stream prefix so far.

Lemma 2.16. For all w ∈ D+ and a ∈ D, we have that

ρ(φ S ψ,w ⋅ a) = ρ(ψ,w ⋅ a) ⊔ (ρ(φ S ψ,w) ⊓ ρ(φ,w ⋅ a)).

This is a well-known equality and can be proved by using distributivity in a

straightforward way. A proof of this for the (R,max,min) lattice appears in [60].

Using the equality of Lemma 2.16, mSince can be implemented as in Figure 2.7.

The correctness of mSince is established by proving invariants on mSinceAux, which

is straightforward once the equality above has been established.

32

Definition aggQueue_inv (l : list B) (q : aggQueue) :=

exists olds news,

olds ++ news = l

/\ new q = rev news

/\ newAgg q = finite_op _ (rev (new q))

/\ length (oldAggs q) = length olds

/\ forall i , nth i (oldAggs q) unit = finite_op _ (skipn i olds).

Definition agg_inv (l : list B) (q : aggQueue) :=

agg q = finite_op _ l.

Lemma aggQueue_agg_inv l q :

aggQueue_inv l q -> agg_inv l q.

Lemma enqueue_aggQueue_inv l q :

aggQueue_inv l q

-> forall n, aggQueue_inv (l ++ [n]) (aggEnqueue n q).

Lemma aggDequeue_aggQueue_inv x xs q :

aggQueue_inv (x :: xs) q

-> aggQueue_inv xs (aggDequeue q).

Figure 2.8 : Invariants for aggQueue

33

Windowed Temporal Folds.

For the operators P[0,a] or H[0,a], the strategy above needs to be modified, since the

fold is over a sliding window, rather than the entire trace. For this purpose, we use a

queue like data structure (dubbed aggQueue, henceforth) which also maintains sliding

window aggregates, in addition. An extended discussion of a similar data structure

can be found in [61].

While we intend to use aggQueue specifically for computing sliding window join

and meet on bounded lattices, the algorirthmic idea behind the data structure only

uses two ideas involving ⊔ (resp., ⊓). Namely: (1) ⊔ (resp., ⊓) is associative (2) �

(resp., ⊺) are identities for ⊔ (resp., ⊓). These features make the lattice elements

a monoid under ⊔ (resp., ⊓). in the remainder of this section, we will describe the

algorithm for a monoid (B, ⋅,1).

As the name suggests, we can think of aggQueue as a data structure with a

queue-like interface: it supports operations aggEnqueue ∶ aggQueue × B → aggQueue

and aggDequeue ∶ aggQueue → aggQueue which allow enqueuing elements of B or

dequeueing them. However, instead of a peek operation, we are interested in an ag-

gregate operation agg ∶ aggQueue→ B which reports the aggregate of all the elements

in the queue.

To implement a usual queue, we maintained two lists: a rear list into which the

new elements are enqueued, and a front list from which elements can be dequeued.

Here, since we are interested in only knowing the aggregates, we replace the front list

with an oldAggs list, which stores partial aggregates instead. Additionally, we keep

track of newAgg, the aggregate of the values in new. Suppose that the contents of

the represented queue are a list l. Then, the invariant we want to maintain suggests

that l can be broken into two parts olds and news such that (1) new contains the

34

elements of news in reverse order (2) newAgg is the aggregate of the elements of news

(3) oldAggs has the same length as that of olds (4) The i-th element of oldAggs

is the aggregate of the ∣olds∣ − i elements of olds. Given these invariants, it is easy

to see that the aggregate of the entire queue can be computed as the aggregate of

newAgg and the head of oldAggs.

We maintain these invariants in the following way: Upon enqueuing b ∈ B, we

simply add b to the head of new and update newAgg to newAgg ⋅ b. Performing a

dequeue is easy when oldAggs is non-empty: we simply remove the element at its

head. When oldAggs is empty, the contents of new are added as incremental partial

aggregates to oldAggs. In Figure 2.8, we show a formalization of the invariants that

one needs to prove.

To keep a sliding window aggregate of the last k elements, mSometimeBounded (or

mAlwaysBounded) initializes an aggQueue filled with k instances of 1 (i.e, � (or ⊺)).

When a new input is available, the monitor enqueues the result of the corresponding

submonitor into the queue and dequeues the element which was enqueued k turns

ago. The output of the machine is simply the aggregate of the elements in the queue.

Using a similar argument as before, we can see that the invocations of mNext on these

machines run in O(1) amortized time (with a worst-case behaviour of O(k) which is

invoked every k turns). See Table 2.1 for an illustration of the execution of such a

machine.

The correctness of the algorithm can be established via mWinFold state. In

essence, it states that the contentsff and contentsrr together store the last k

elements of the stream, and that the invariants on aggsff and aggsrr are maintained.

Theorem 2.17. Assume that elements of V can be stored in constant space and the

lattice operations on V can be computed in constant time and space. Further, let

35

l new oldAggs newAgg agg

⟨1,1,1∣⟩ ⟨⟩ ⟨1,1,1⟩ 1 1

⟨1,1∣a⟩ ⟨a⟩ ⟨1,1⟩ a 1 ⋅ a

⟨1∣a, b⟩ ⟨b, a⟩ ⟨1⟩ ab 1 ⋅ ab

⟨∣a, b, c⟩ ⟨c, b, a⟩ ⟨⟩ abc 1 ⋅ abc

⟨b, c∣d⟩ ⟨d⟩ ⟨bc, c⟩ d bc ⋅ d

⟨c∣d, e⟩ ⟨e, d⟩ ⟨c⟩ de c ⋅ de

Table 2.1 : A run of the sliding window algorithm that aggregates the last 3 elements.

The elements a, b, c, d, e are fed in, incrementally. We use ∣ as a separator in l to

indicate the old and the new parts of the queue. Note that the contents of l itself

are not stored.

36

φ ∈ Φ be a formula that only uses atomic functions that can be computed in constant

time and space. Then, toMonitor(φ) is a Mealy machine whose state can be stored

in O(2∣φ∣) space and the transition (resp., output) functions mNext (resp., mOut) can

be computed in amortized O(∣φ∣) time per item.

Note: The exponential in the formula stems from the fact that the constants in

the formula are encoded in binary. Note that this is unavoidable since computing the

value of Pap would require storing the last a values of p.

Proof of Theorem 2.17. This claim can be established via a straightforward induction

on the structure of the formula φ. At each step in the induction, we need to show a

constant space and amortized time overhead is created.

If φ is an atomic predicate, then computing φ can be done in constant time by

assumption and it requires no additional state.

If φ = α ● β for ● ∈ {∧,∨}, then we may assume by induction that toMonitor(α)

(resp., toMonitor(β)) use O(2∣α∣) (resp., O(2∣β∣)) space and amortized O(∣α∣) (resp.,

O(2∣β∣)) time. The machine toMonitor(α ∗ β) uses the states of both toMonitor(α)

and toMonitor(β) and can be stored in O(2∣α∣+2∣β∣) = O(2∣φ∣) space. By assumption,

the additional time required to compute the lattice operation to combine the outputs

of toMonitor(α) and toMonitor(β) is O(1). So, this takes O(∣α∣) +O(∣β∣) +O(1) =

O(∣φ∣) amortized time.

If φ =X[0,∞)α for X ∈ {P,H} or αS[0,∞)β, then the analysis is similar. In this case,

the additional state we need to store is an element of V, which we can store in O(1)

space. The additional time required is just a constant number of lattice operations,

which can be done in O(1) time. Thus, the inductive invariant is preserved in this

case.

37

If φ = Xaα or X[0,a]α for X ∈ {P,H}, then it is handled using a delay buffer or

a sliding window aggregator as discussed. In both of these cases, a buffer of length

O(a) (i.e, O(2∣a∣)) is used. These queue mechanisms, as discussed above, are used in

an “enqueue followed by dequeue” manner. The dequeue operations generally take

O(1) time but every a inputs involve reversal of the buffer which takes O(a) time.

This amounts to an amortized time of O(1) per item.

2.4 Extraction and Experiments

We use Coq’s extraction mechanism to produce OCaml code for our toMonitor

function. This gives us an OCaml library the interface of which we show in Figure

2.9. The extracted toMonitor function can be instantiated with arbitrary bounded

distributive lattices by specifying the operations ⊓ and ⊔ and the corresponding iden-

tities ⊺ and �.

For our experiments, we Following Example 2.5, we wish to emulate STL and use

the lattice (R ∪ {±∞},max,min). To do this, we model R with the concrete OCaml

type float, which are 64-bit floating-point numbers. We also use R (modelled by

float) for the set of data items D. We compare the performance of our monitor with

Reelay [30] (a C++ library) and the implementation for semiring-based monitoring

algorithms in Rust from [36].

We have observed that the rate at which these tools process items roughly ap-

proaches a constant rate. Most notably, there are periodic spikes of latency that

can be observed in our monitor, which correspond to the reversal of the lists in our

queue based algorithms. A similar behavior is seen in the semiring-monitor, but

this is harder to observe since the Rust implementation is very fast. We summarize

performance using the amortized (i.e., average) time taken to process an item. To

38

type ('v, 'a) formula =

| FAtomic of ('a -> 'v)

| FAnd of ('v, 'a) formula * ('v, 'a) formula

| FOr of ('v, 'a) formula * ('v, 'a) formula

| FSometime of int * int * ('v, 'a) formula

| FAlways of int * int * ('v, 'a) formula

| FSometimeUnbounded of int * ('v, 'a) formula

| FAlwaysUnbounded of int * ('v, 'a) formula

| FSince of int * int * ('v, 'a) formula * ('v, 'a) formula

| FSinceDual of int * int * ('v, 'a) formula * ('v, 'a) formula

| FSinceUnbounded of int * ('v, 'a) formula * ('v, 'a) formula

| FSinceDualUnbounded of int * ('v, 'a) formula * ('v, 'a) formula

type 'a lattice = { join : ('a -> 'a -> 'a); meet : ('a -> 'a -> 'a) }

type 'a boundedLattice = { bottom : 'a; top : 'a }

val toMonitor :

'a1 lattice -> 'a1 boundedLattice

-> ('a1, 'a2) formula -> ('a1, 'a2) monitor

Figure 2.9 : Extracted OCaml Code

39

microbenchmark the building blocks of our algorithm, we consider formulas X[0,n],

Xn, X[n,2n], X[n,∞) where X ∈ {S,P} and plot their performance with respect to n

in Fig. 2.10. We notice that for Reelay, the performance depends on the type of

input stream provided; so, we report our findings for a stream whose elements are

random, a stream whose elements form an increasing sequence and another which

forms a decreasing sequence. In our tool and the semiring-monitor, the performance

of the monitor seems to be roughly independent of the stream. Beyond certain values

of the constants, some of the experiments with Reelay seemed to take prohibitively

long time to process a given stream, preventing us from reliably measuring the per-

formance at these values. Generally, we see that our tool has been performing better

than Reelay but slower than the semiring-monitor, at least by an order of magnitude.

We also see that the performance of our tool is roughly independent of the constants

in the formula, as we expected from the analysis of our algorithms. The reported

data is based on the mean of 6 trials of the experiments. The standard deviation is

less than 15% of the mean in each case, and is indicated by whiskers.

A potential explanation for the comparatively worse performance of Reelay is

that Reelay stores data values in string-indexed maps. Interval Maps are also used in

Reelay’s implementation of operators such as P[●,●]. Since our tool does not use any

map-like data structure, we do not incur these costs.

We have used the profiling tool Valgrind [62] to analyze the memory consumption

of the monitors. In Fig. 2.10, we plot the peak memory usage of the monitors for

the same formulas as before. For Reelay, we have reported the performance for three

different traces. In the case of the semiring-monitor, the memory consumption can

be explained near-perfectly with the help of the description of the algorithm (which

is very similar to ours). This can be attributed to the fact that Rust programs have

40

very minimal runtime overheads. The memory usage of Reelay is somewhat hard to

understand, given that it is based on the Interval Maps data structures. Our tool

is implemented in OCaml and its memory consumption is hard to interpret due to

the garbage-collected nature of the language, however we do see a linear trend in

the memory consumption with sufficiently high values for constants. The memory

measurements for all three tools seemed to be deterministic, i.e, had the same value

regardless of when it was executed.

In Figure 2.11, we use formulas inspired by the Timescales [63] benchmark to

see how our tool performs when the constants in the formulae are scaled. The for-

mulas used in the Timescales benchmark are in propositional MTL, so we define

the propositions p, q, r and s as x > 0.5, x > 0.0, x > 0.25 and x > 0.75 respec-

tively, where x is the value of the current sample in the trace. For different values

of n, the formulas F0 through F9 in Figure 2.11, in order, are: H(P[0,n]q → (¬p S q)),

H(r → P[0,n](¬p), H((r∧¬q∧Pq) → (¬pS[n,2n] q)), H(P[0,n]q → (pSq)), H(r → H[0,k]p),

H((r ∧ ¬q ∧ Pq) → (p S[n,2n] q)), HP[0,n]p, H((r ∧ ¬q ∧ Pq) → (P[0,n](p ∨ q) S q)),

H((s→ Pn,2np)∧¬(¬sS[n,∞)p)), and H((r∧¬q∧Pq) → ((s→ P[n,2n]p)∧¬(¬sS[n,∞)p))).

Implications α → β were encoded as ¬α ∨ β and negations were encoded using their

negation normal form. We have executed this experiment using traces with random

values. The reported values are means of 10 trials, and we have used whiskers to

denote the standard deviation.

All experiments were run on a computer with Intel Xeon CPUs 3.30GHz with

16GB memory running Ubuntu 18.04.

41

100

103
P[0, n] Pn P[n, 2n] P[n,)

24 28 212 216

100

103
S[0, n]

24 28 212 216

Sn

24 28 212 216

S[n, 2n]

24 28 212 216

S[n,)

Reelay-Increasing Reelay-Decreasing Reelay-Random semiring-monitor lattice-monitor

ti
m

e
-p

e
r-

it
e
m

 (
s)

103

105

P[0, n] Pn P[n, 2n] P[n,)

24 28 212 216

103

105

S[0, n]

24 28 212 216

Sn

24 28 212 216

S[n, 2n]

24 28 212 216

S[n,)

Reelay-Increasing Reelay-Decreasing Reelay-Random semiring-monitor lattice-monitor

m
e
m

o
ry

 (
K

B
)

Figure 2.10 : Microbenchmarks: Formulas with large constants

10 1

100
F0(n) F1(n) F2(n) F3(n) F4(n)

24 28 212 216

10 1

100
F5(n)

24 28 212 216

F6(n)

24 28 212 216

F7(n)

24 28 212 216

F8(n)

24 28 212 216

F9(n)

Reelay semiring-monitor lattice-monitor

tim
e-

pe
r-i

te
m

 (
s)

Figure 2.11 : Throughput for formulas from the Timescales benchmark

42

2.5 Related Work

Fainekos and Pappas [29] introduce the notion of robustness for the interpretation of

temporal formulas over discrete and continuous-time signals. In their setting, signals

are represented as (time-dependent) functions that take value in a metric space. The

distance function of the metric space is used to endow the signal space with a metric.

The robustness of satisfaction is defined to be the largest extent to which a signal

can be perturbed while still satisfying (or violating, depending on the case) the spec-

ification. In the same paper, an alternative quantitative semantics is proposed with

an inductive definition that replaces disjunction with max and conjunction with min.

This inductive semantics computes an under-approximation of the actual robustness

value. This approach is extended by Donzé and Maler [42] to include temporal ro-

bustness. The inductive semantics of [29] can be computed efficiently, and forms the

basis for the semantics we use.

The inductive semantics could be slightly generalized by interpreting conjunction

(resp., disjunction) with multiplication (resp., addition) in some semiring. This idea

subsumes the semantics of this paper since lattices are also semirings. In [36], this

semantics is explored and an abstract version of the underapproximation guarantee

from [29] is presented. With our approach, we would not be able to monitor formulas

with this semantics since we make crucial use of the absorption laws in Lemma 2.14.

In [36], a different approach for monitoring formulas with S[0,a] is discussed that does

not rely on this property. It is also noted that a semiring in which Lemma 2.14

holds must be a bounded distributive lattice. It is worth noting that monitoring S

or S[0,a] in this inductive semiring-based framework with an analog of Lemma 2.16

would require addition to distribute over multiplication. Our lattice-based semantics

is considered in a dense-time setting in [17], along with a performance analysis of its

43

Rust implementation.

The simple dynamic-programming algorithm for offline monitoring of Linear Tem-

poral Logic (with future modalities, in discrete-time, without metric or quantitative

extensions) has been a part of the folk-lore for a long time; early references can be

seen in [64]. Sen et al. [65] have considered the problem of detecting good and bad

prefixes of infinite words with respect to future-time Boolean temporal logic. Good

prefixes are (finite) words w such that any (infinite) extension w ⋅ σ of them would

satisfy the logical formula. Similarly, bad prefixes are finite words such that no ex-

tension of them satisfies the formula. Sen and their coauthors have proven that such

an automaton must have Ω(22∣φ∣) states. In other words, such an algorithm must use

Ω(2∣φ∣) bits of space. The proof involves encoding the following language using an

LTL formula of size O(k2):

Lk = {σ#w#σ′$w ∣ w ∈ {0,1}k and σ,σ′ ∈ {0,1,#}∗}.

This technique has also been used by [66] and [67] to prove lower bounds involv-

ing temporal logic. Thati and Rosu have discussed the complexity of monitoring

algorithms for MTL (with Boolean semantics) in [68], where they have shown that

monitoring MTL with future modalities requires at least Ω(2αc
√
∣φ∣), where φ is φ

without any numerical constants, c is the largest constant occurring in φ and α is a

fixed constant. The exponential blowup in the space complexity of monitoring can

be attributed to the fact that the monitor is anchored at position 0 of the trace, and

must maintain an additional amount of state in order to monitor the future. This is

in contrast to our approach, where the monitor only needs to summarize information

on the part of the trace that is already available. The online monitoring algorithm

with a similar complexity as ours was first published by Mamouras and Wang [45].

The notion of distance between traces from [29] has been generalized in [69]

44

to a more general algebraic setting using a semiring-based semantics. While both

Mamouras et al. [36] and Jaksic et al. [69] consider truth domains that are semirings,

the two works consider different semantics. Jaksic et al. suggest the use of symbolic

weighted automata for the purpose of monitoring. With this approach, they are able

to compute the precise robustness value for a property-signal pair. The construc-

tion of a weighted automaton from a temporal formula incurs a doubly exponential

blowup, if one assumes a succinct binary representation of the constants appearing

in an MTL formula.

The distance between two signals can be defined to be the maximum of the dis-

tance between the values that the signals take at corresponding points of time. How-

ever, other ways to define this distance have been considered. In [70], a quantitative

semantics is developed via the notion of weighted edit distance. Averaging temporal

operators are proposed in [71] with the goal of introducing an explicit mechanism for

temporal robustness. The Skorokhod metric [72] has been suggested as a distance

function between continuous signals. In [73], another metric is considered, which

compares the value taken by the signal within a neighbourhood of the current time.

Another interesting view of temporal logic is in [74], where temporal connectives are

viewed as linear time-invariant filters.

Signal regular expressions (SREs) [75] are another formalism for describing pat-

terns on signals. They are based on regular expressions, rather than LTL. SREs

are a variant of the timed regular expressions (TREs) of [76], which are related to

timed automata [77]. A robustness semantics for SRE has been proposed in [78] along

with an algorithm for offline monitoring. In [79], STL is enriched by considering a

more general (and quantitative) interpretation of the Until operator and adding spe-

cific aggregation operators. They also give a semantics of their formalism using dual

45

numbers, which are the real numbers with an adjoined element ϵ satisfying ϵ2 = 0.

In [80], a monitoring algorithm for STL is proposed and implemented in the AMT

tool. A later version, AMT 2.0 [81] extends the capabilities of AMT to an extended

version of STL along with TREs. In [59], an efficient algorithm for monitoring STL is

discussed whose performance is linear in the length of the input trace. This is achieved

by using Lemire’s [43] sliding window algorithm for computing the maximum. This is

implemented as a part of the monitoring tool Breach [82]. A dynamic programming

approach is used in [60] to design an online monitoring algorithm. Here, the avail-

ability of a predictor is assumed which predicts the future values, so that the future

modalities may be interpreted. A different approach for online monitoring is taken

in [83]: they consider robustness intervals, that is, the tightest interval which covers

the robustness of all possible extensions of the available trace prefix. There are also

monitoring formalisms that are essentially domain-specific languages for processing

data streams, such as LOLA [84] and StreamQRE [49, 52]. LOLA has recently been

used as a basis for RtLOLA [85] in the StreamLAB framework [86], which adds sup-

port for sliding windows and variable-rate streams. A detailed survey on the many

extensions to the syntax and semantics of STL along with their monitoring algorithms

and applications is presented in [14].

In [87], a framework towards the formalization of runtime verification components

are discussed. MonPoly [88] is a tool developed by Basin et al. aimed at monitoring

a first-order extension of temporal logic. In [89], the authors put forward Verimon, a

simplified version of MonPoly which uses the proof assistant Isabelle/HOL to formally

prove its correctness. They extend this line of work in Verimon+ [90] which verifies a

more efficient version of the monitoring algorithms and uses a dynamic logic, which is

an extension of the temporal logic with regular expression-like constructs. A verifying

46

compiler for LOLA specifications to rust implementations has been developed in [91].

Their toolchain generates rust code from given LOLA specifications that are decorated

with annotations that can be checked by the Viper [92] toolkit to verify functional

correctness. On the one hand, a Rust implementation would perform very well. On

the other, the verification mechanism in this toolchain is based on SMT solvers while

ours is based on the axioms of Coq’s calculus, which is a much smaller system.

47

Chapter 3

Matching Regular Expressions with Lookarounds

3.1 Introduction

While textbook regular expressions involve only concatenation (r ⋅ s), alternation

(r + s) and Kleene iteration r∗, modern regex engines (such as PCRE [34]) support

a multitude of additional features. Some of these features are purely syntactic sugar,

such as the use of character classes (e.g., [a-z]) to indicate predicates or the use of

the ? operator (e.g., e?) to indicate zero or one occurrence. Some of these features,

like counting (e.g., e{3,5}) add exponential succinctness. Features like backreferences

make it possible to match certain non-regular languages (e.g., (a*)b\1 defines the

language {anban∣n ≥ 0}). Certain constructs, such as capture groups or lookarounds,

do not add to the expressive power in terms of the overall strings that can be matched,

but are best described using a different semantics (i.e., different from the simple

Boolean semantics of w ∈ JrK and w /∈ JrK).

The focus of this chapter is on expressions with lookarounds. Lookahead asser-

tions (respectively, lookbehind assertions) are used to assert that a certain pattern is

satisfied in the future (respectively, in the past) of the current position in the string.

For example, one could use the expression \d+\.\d\d(?= USD) to match a price of

some item formatted as xxx.yy USD. Since the pattern USD appears within a looka-

head, this part of the is string is not returned, so that the programmer can directly

work with the numerical information. Similarly, if the pattern USD was expected to

48

appear before the price, one could use the expression (?<= USD)\d+\.\d\d , where

the pattern USD is within a lookbehind.

The semantics of lookarounds is dependent on context: given a substring w and

a regular expression with lookaround r, we cannot determine whether w matches r

without considering the string in which w appears. Standards such as PCRE [34] are

not helpful here, since they describe the semantics in an operational style making it

unsuitable to verify a given implementation. In this chapter, we use a satisfaction re-

lation w, [i, j] ⊧ r (indicating that the substring w[i, j] satisfies the regular expression

r) which makes the ambient string w explicit.

The majority of popular regex engines bundled with the standard library of pro-

gramming languages such as Java, Javascript and Python are based on backtracking,

which may take exponential time in the worst-case scenario (called catastrophic back-

tracking [93]). This behavior could be used to conduct a denial-of-service attack [94].

Automata-based tools such as Google’s RE2 [95] and Intel’s Hyperscan [96] are guar-

anteed to finish execution in linear time. Despite this, backtracking engines remain

popular due to their flexibility and support for non-classical features, including (but

not limited to) lookarounds. To the best of our knowledge, none of the widely used

automata-based engines support lookarounds.

While regular expressions with lookarounds can be compiled into NFA, doing so

would incur an exponential blowup (see, for example, [97] for a lower bound) and

this strategy would not be practical for matching. The algorithm we describe in this

chapter approach runs in time O(m ⋅ n), where m is the size of the regex and n is

the length of the input string. This approach does not suffer from this blowup be-

cause it does not construct a large automaton. Moreover, it processes the string using

both left-to-right and right-to-left passes, unlike the typical streaming (left-to-right)

49

NFA simulation. The key idea behind our algorithm is to decompose expressions

with lookarounds into different layers using the nesting structure of the lookarounds.

The algorithm proceeds in a bottom-up fashion, first resolving the lookaround asser-

tions at the lower layers, and then using this information to resolve lookarounds at

the higher layers. Thus, when we encounter a subexpression (?= r), we first match

the subexpression r on the input string and record the results. Any subsequent re-

quirements to resolve the lookaround assertion can be directly answered by using the

recorded results. Formally, this is done by replacing lookaround assertions with oracle

queries and enriching the strings with oracle valuations which are used to resolve the

queries. Note that, with this approach, we construct NFAs for each expression in the

decomposition instead of constructing a single large NFA for the entire expression.

We have extended algorithms based on Marked Regular Expressions [32, 33] to

match certain enriched expressions. In contrast to an alternative approach using

NFAs (as we have done in our paper [28]), this approach is purely functional. Marked

expressions allow simulating NFAs in a manner that closely resembles the syntax

of regular expressions, facilitating elegant verification without compromising perfor-

mance.

Chapter Outline. In Section 3.2, we provide an informal exposition of the

semantics of regular expressions with lookarounds and the matching algorithm illus-

trated using examples. In Section 3.3, the formal syntax and semantics are presented.

In Section 3.4, we discuss how this semantics could be leveraged for equational rea-

soning, and illustrate this with the equational theory of anchors. In Section 3.5, we

define Oracle Regular Expressions and Oracle Strings, the core abstraction used in

our algorithm. The matching algorithm for oracle expressions is discussed in Section

3.6. The main algorithm is presented in Section 3.7. Performance experiments using

50

our extracted code are presented in Section 3.8. Finally, we discuss related work in

Section 3.9.

3.2 Overview of the Algorithm

In this section, we provide an informal exposition of the semantics of regular expres-

sions with lookarounds and the algorithm for matching them, along with illustrative

examples. Formal definitions of the lookaround semantics are presented in Section

3.3.

The examples in this section are over ASCII characters. In PCRE notation [34],

the character-class . matches all characters. Thus, the positive lookaround asser-

tion l1 = (?=.*d.*e) asserts that to the right of the current position, there is some

occurrence of the letter d followed by an occurrence of the letter e . Let’s consider

the string w1 = bcbdbebc with ∣w1∣ = 8. In w1, d occurs at position 3 and e occurs

at position 5. We interpret lookaheads as zero-width assertions, meaning that their

matches are considered to be windows of length 0. In this case, the windows [0,0],

[1,1], [2,2] and [3,3] satisfy the assertion l1. Given the regex r1 = bc(?=.*d.*e) , the

occurrence of the string bc at the window [0,2] matches r1. However, the occurrence

of the string bc at the window [6,8] does not since it fails the assertion. Note that

r1 is different from the expression r2 = bc.*d.*e which matches the longer window

[0,6] containing the string bcbdbe .

The character-class \d refers to digits. The negative lookahead assertion (?!\d\d)

asserts that the next two characters in the string are not digits. The expression r3 =

((?!\d\d).)+ nests the assertion within a Kleene plus, thus forcing every character

in the match window to satisfy it. In this case, the expression r3 would match a string

if it doesn’t contain any two consecutive digits. Consider the string w2 = a1b1c1 and

51

w3 = a1b21c1 . The expression r3 matches any (non-zero length) window in the string

w2 since there are no consecutive occurrences of digits. In contrast, in w3, only the

windows not containing the substring 21 would match r3.

One could use the positive lookbehind l2 = (?<=c.*) to indicate the presence of the

character c in the past of the current position in the string. Lookarounds can also be

nested within each other. Consider l3 = (?<=c((?!\d\d).)+) which searches for an

occurrence of the character c followed by a non-empty sequence of characters that

do not contain two consecutive digits. Let w4 = c01c0 with ∣w4∣ = 5. The expression

l3 would match only the (zero-length) windows [4,4] and [5,5], since the substring

01 after the first c disqualifies it as a witness.

Consider the regex r = (?<=c((?!\d\d).)+)(a+)b(?=.*d.*e) and the string w =

cabc77dcaab7dabe . The four potential matches for the subexpression (a+)b are indi-

cated below by highlighting the substrings corresponding to their windows at [1,3],

[8,11], [9,11] and [13,15]:

c a b c 7 7 d c a a b 7 d a b e

The window [1,3] does not satisfy the lookbehind. This is because even though there

is a c at position 0, the substring 77 appearing at [4,6] in the future disqualifies

it. The window [8,11] does not satisfy the lookbehind either, since the + requires at

least one character after the occurrence of c before the match window. The window

[13,15] does not satisfy the lookahead since there is no d in the future. It can be

checked that only the window [9,11] are matches.

Our algorithm can handle arbitrarily nested lookarounds. The key idea is to de-

compose the regular expression with each nested layer of lookaround as its own layer.

At the bottom layer, since there are no lookarounds, we can use a standard NFA-based

matching algorithm. In subsequent layers, we use the matching information from the

52

previous layers to resolve the lookaround assertions. (See 3.7) This is done by consid-

ering a slightly enriched notion of an NFA which processes strings augmented with

oracle valuations (See Section 3.5).

We decompose the regex r into the following expressions:

r̂ = Q+(s1)(a+)bQ+(s2)

s1 = (LookBehind, [c((Q-(s3).)+])

s2 = (LookAhead, [.*d.*e])

s3 = (LookAhead, [\d\d])

We have used the notation Q+ and Q- to indicate whether the lookaround is positive

or negative and tagged each subexpression with a direction.

For the subexpressions s1, s2 and s3, we will compute corresponding tapes τ1, τ2

and τ3. At position i, the tape for each lookahead (respectively, lookbehind) assertion

indicates whether the subexpression matches [0, i] (respectively, [i, ∣w∣]). We start by

computing the tapes τ2 and τ3 since s2 and s3 do not depend on any other expressions.

string w c a b c 7 7 d c a a b 7 d a b e

tape τ2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

tape τ3 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

The lookahead s2 searches for the occurrence of a d followed by a e in the future.

The final occurrence of a d is at position 12 and the final occurrence of an e is at

position 15. Thus, the tape τ2 contains a 1 at all positions before position 12 and

all 0s afterwards. The lookahead s3 searches for two consecutive digits in the future.

Since this only occurs at the window [4,6], the tape τ3 is marked with 1s only before

position 4. Next, we turn our attention to s1 which depends on s3. To evaluate this,

we need to use the oracle valuation τ3 in conjunction with the string w.

53

string w c a b c 7 7 d c a a b 7 d a b e

tape τ3 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

tape τ1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

The expression s1 looks for an occurrence of c in the past such that it is followed

by at least one character which satisfies a negative valuation of s3. We see that in

positions 0 and 3, c appears, but the valuation associated with τ3 disqualifies them.

At position 7, this additional constraint is satisfied, and hence all the positions with

indices greater than 8 are marked with 1 in the tape τ1.

Combining the information from tape τ1 and τ2 together with w gives us the

necessary information for evaluating the top-level expression r̂.

string w c a b c 7 7 d c a a b 7 d a b e

tape τ1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

tape τ2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

Since the expression r̂ is Q+(s1)(a+)bQ+(s2), it will be matched at a window where

the corresponding substring of w matches a+b and the oracle valuation for τ1 to the

left and the oracle valuation for τ2 to the right are both 1. Inspecting the table above

shows that the window [9,11] is the only one that satisfies these conditions.

3.3 Lookaround Semantics

In this section, we introduce the formal definitions used in this chapter. Note that

there is a slight difference between the notation in the following definition and the

PCRE notation used in the previous section. The connections will be made clear in

Section 3.3.1.

Definition 3.1 (Regular Expressions with Lookaround). Let Σ be an alphabet,

and P a set of decidable predicates over Σ (i.e., functions of type Σ → {1,0}). The

54

set LReg of regular expressions with lookaround is defined by the following grammar:

r, r1, r2 ∶∶= ε ∣ σ ∈ P ∣ r1 ⋅ r2 ∣ r1 + r2 ∣ r∗ ∣ (?> r) ∣ (?/> r) ∣ (?< r) ∣ (?/< r)

The expressions of the form (?> r), (?/> r), (?< r) and (?/< r) are called positive looka-

head, negative lookahead, positive lookbehind and negative lookbehind respectively.

Collectively, they are called lookaround assertions. Expressions of the form (?> r) and

(?/> r) (respectively, (?> r) and (?/> r)]) are called lookahead assertions (respectively,

lookbehind assertions). Furthermore, (?> r) and (?< r) are called positive lookarounds,

while (?/> r) and (?/< r) are called negative lookarounds.

We write ∣w∣ to denote the length of a string w. The empty string (i.e., the string

of length 0) is denoted by ε. For a string w ∈ Σ∗, we will call a formal pair [i, j] with

0 ≤ i ≤ j ≤ ∣w∣ a window in w.

We use some additional notation throughout the chapter. We write r+ to denote

r ⋅r∗, i.e., the repetition of r one or more times. We define the expression ∅ to be the

predicate � which does not match any character. This expression has the property

that for any w ∈ Σ∗ and any window [i, j] of w, we have w, [i, j] /⊧ ∅.

A partitioning of a window [i, j] (where i ≤ j) is a nonempty finite sequence

of windows [i1, j1], [i2, j2], . . . , [in, jn] with i1 = i, jn = j, and jk = ik+1 for every

k = 1,2, . . . , n− 1. We say that a partition has no empty blocks if jα − iα > 0 for every

α. We can restate the semantics for Kleene Iteration in terms of partitions using the

following lemma.

Lemma 3.2. Let r ∈ LReg, w ∈ Σ∗, and 0 ≤ i ≤ j ≤ ∣w∣. Then, w, [i, j] ⊧ r∗ iff i = j or

there exists a partition [i1, j1], [i2, j2], . . . , [in, jn] without empty blocks of [i, j] such

that w, [ik, jk] ⊧ r for every k = 1, . . . , n.

55

w, [i, j] ⊧ ε ⇐⇒ i = j

w, [i, j] ⊧ σ ⇐⇒ j = i + 1 and σ(wi) = 1

w, [i, j] ⊧ r1 + r2 ⇐⇒ w, [i, j] ⊧ r1 or w, [i, j] ⊧ r2

w, [i, j] ⊧ r1 ⋅ r2 ⇐⇒ there is i ≤ k ≤ j s.t. w, [i, k] ⊧ r1 and w, [k, j] ⊧ r2

w, [i, j] ⊧ r∗ ⇐⇒ i = j or there is i ≤ k ≤ j s.t. w, [i, k] ⊧ r and w, [k, j] ⊧ r∗

w, [i, j] ⊧ (?> r) ⇐⇒ i = j and w, [i, ∣w∣] ⊧ r

w, [i, j] ⊧ (?/> r) ⇐⇒ i = j and w, [i, ∣w∣] /⊧ r

w, [i, j] ⊧ (?< r) ⇐⇒ i = j and w, [0, i] ⊧ r

w, [i, j] ⊧ (?/< r) ⇐⇒ i = j and w, [0, i] /⊧ r

Figure 3.1 : Definition of the satisfaction relation ⊧ relating a string w ∈ Σ∗, a window

[i, j] with 0 ≤ i ≤ j ≤ ∣w∣, and a regular expression r ∈ LReg, possibly with lookarounds.

56

Lemma 3.2 serves as a sanity check for the semantic definition of Fig. 3.1 for

Kleene’s star. A related observation is that while defining w, [i, j] ⊧ R∗, we could

have chosen a k that is strictly larger than i without loss of generality.

Inductive LRegex : Type :=

| Epsilon : LRegex

| CharClass : (A -> bool) -> LRegex

| Concat : LRegex -> LRegex -> LRegex

| Union : LRegex -> LRegex -> LRegex

| Star : LRegex -> LRegex

| LookAhead : LRegex -> LRegex

| LookBehind : LRegex -> LRegex

| NegLookAhead : LRegex -> LRegex

| NegLookBehind : LRegex -> LRegex.

In Coq, we encoded LReg as an in-

ductive data type (see the definition

on the right). We use two induc-

tively defined predicates match regex,

and not match regex. The Proposition

match regex r w s d stands for the

proposition w, [s, s + d] ⊧ r, and the

Proposition not match regex r w s d

stands for the negation, i.e., w, [s, s+d] /⊧

r. These two predicates are defined using

mutual recursion.

We define not match regex directly, instead of encoding it as the negation of

match regex. This is because such an encoding cannot be used in the arguments

of the constructor NegLookAhead or NegLookBehind. The encoding σ → � of the

negation ¬σ as an argument of a constructor would violate strict positivity. We prove

the two following lemmas which show that the two predicates behave in the manner

expected.

Lemma match_not_match : forall r w start delta,

~ (match_regex r w start delta) <-> (not_match_regex r w start delta).

Lemma match_lem : forall r w start delta,

match_regex r w start delta \/ ~ (match_regex r w start delta).

57

In our Coq formalization, we choose to work with the representation w, [s, s + d] ⊧ r,

rather than w, [i, j] ⊧ r. This is so that we can avoid dealing with additional ordering

constraints i ≤ j while dealing with proofs.

3.3.1 Relationship to PCRE Semantics.

The lookaround semantics presented in Fig. 3.1 slightly differs from PCRE [34]. The

PCRE-style positive lookahead (?= r) is matched at position i if there is some i ≤

j ≤ ∣w∣ such that w, [i, j] ⊧ r. This is in contrast to our (?>R) which matches until

the end of the string, i.e., w, [i, ∣w∣] ⊧ r. Similarly, the PCRE lookbehind (?<= r) at

position i matches if there exists some 0 ≤ j ≤ i such that w, [j, i] ⊧ r, whereas (?<)

matches the entire prefix [0, i]. The negative variants (?! r) and (?<! r) in PCRE

have a similar semantics.

In addition, PCRE uses ^ and $ to denote the start and end of the string, respec-

tively. This means that w, [i, j] ⊧ ^ iff i = j = 0, and w, [i, j] ⊧ $ iff i = j = ∣w∣. We

show that PCRE lookarounds can be encoded in our notation, and vice-versa. The

anchors ^ and $ can be encoded as (?< ε) and (?> ε) respectively. The PCRE positive

lookahead (?= r) can be encoded in our notation as (?> r ⋅Σ∗), where the Σ∗ allows

the addition of an arbitrary suffix after the witness for r. Conversely, our positive

lookahead (?> r) can be encoded in PCRE notation as (?= r$), where the $ enforces

that the match of r must be to the end of the string. The other cases (lookbehinds

and the negative variants) can be encoded similarly.

3.4 Equational Reasoning

Definition 3.3 (Equivalence and Containment Relations on Regular Expressions).

Let r, s ∈ LReg. We say that r and s are equivalent, and we write r ≡ s, if for every

58

string w ∈ Σ∗ and every window [i, j] of w, we have w, [i, j] ⊧ r ⇐⇒ w, [i, j] ⊧ s.

We also define the containment relation r ⊑ s as notational shorthand for r + s ≡ s.

We encode the ≡ and ⊑ relations in Coq as follows:

Definition regex_eq (r1 r2 : LRegex) : Prop :=

forall w start delta,

match_regex r1 w start delta <-> match_regex r2 w start delta.

Definition regex_leq (r s : Regex) : Prop :=

regex_eq (Union r s) s.

We notice that this is an equivalence relation and a congruence with respect to the

regular expression combinators such as concatenation, union, Kleene iteration and the

lookarounds. In the terminology of Coq, these congruence relations can be expressed

as Proper morphisms. Declaring them in this manner allows standard rewrite tactics

to use ≡-based equations for rewriting inside proofs.

Instance regex_eq_equiv : Equivalence regex_eq.

Instance union_proper : Proper (regex_eq ==> regex_eq ==> regex_eq) Union.

Instance concat_proper : Proper (regex_eq ==> regex_eq ==> regex_eq) Concat.

Instance star_proper : Proper (regex_eq ==> regex_eq) Star.

An equivalent approach is to define r ⊑ s so that it holds when for every w ∈ Σ∗ and

every window [i, j] of w, we have w, [i, j] ⊧ r Ô⇒ w, [i, j] ⊧ s. We prove that these

two definitions are equivalent.

Lemma subset_leq : forall (r s : LRegex),

regex_leq r s <->

(forall (w : list A) (start delta : nat),

match_regex r w start delta -> match_regex s w start delta).

59

We have shown that ⊑ is a partial order and the operations of union and concatenation

are monotone with respect to this order. These monotonicity theorems can also be

expressed using proper morphisms.

Instance regex_leq_partialorder : PartialOrder regex_eq regex_leq.

Instance union_monotone : Proper (regex_leq ==> regex_leq ==> regex_leq) Union.

Instance concat_monotone : Proper (regex_leq ==> regex_leq ==> regex_leq) Concat.

We have proven in Coq the following identities resembling the properties of a Kleene

Algebra [31].

Lemma 3.4 (Equivalences for Regular Expressions). The following properties

hold for all regular expressions r, r1, r2, r3 ∈ LReg(Σ):

1. (r1 ⋅ r2) ⋅ r3 ≡ r1 ⋅ (r2 ⋅ r3) and ε ⋅ r ≡ r ⋅ ε ≡ r

2. (r1 + r2) + r3 ≡ r1 + (r2 + r3), r1 + r2 ≡ r2 + r1, and r + ∅ ≡ r

3. r1 ⋅ (r2 + r3) ≡ r1 ⋅ r2 + r1 ⋅ r3, and (r1 + r2) ⋅ r3 ≡ r1 ⋅ r3 + r2 ⋅ r3

4. ∅ ⋅ r ≡ r ⋅ ∅ ≡ ∅

5. ε + rr∗ ⊑ r∗

6. ε + r∗r ⊑ r∗

7. r1 ⋅ r2 ⊑ r2 Ô⇒ r∗1 ⋅ r2 ⊑ r2

8. r2 ⋅ r1 ⊑ r2 Ô⇒ r2 ⋅ r∗1 ⊑ r2

Proof. As a representative case, we consider property (5) and we leave the rest of the

cases to the reader. It suffices to show that ε ⊑ r∗ and rr∗ ⊑ r∗. We omit the proof

60

of ε ⊑ r∗. Let w be an arbitrary string and [i, j] be a location in w. Suppose that

w, [i, j] ⊧ rr∗. It follows that there exists k such that w, [i, k] ⊧ r and w, [k, j] ⊧ r∗.

So, there is a decomposition S of [k, j] such that w, [i′, j′] ⊧ r for every location [i′, j′]

in S. Define S′ = [i, k] ⋅ S and notice that S′ is a decomposition of [i, j] witnessing

that w, [i, j] ⊧ r∗. We have thus established that rr∗ ⊑ r∗.

We have also proven several properties involving lookarounds.

Lemma 3.5 (Algebraic Properties of Lookaround). The following properties for

lookahead assertions hold (and completely symmetric properties hold for lookbehind

assertions):

1. Concatenation of lookarounds is commutative: (?> r) ⋅ (?> s) ≡ (?> s) ⋅ (?> r).

2. Idempotence: (?> r) ⋅ (?> r) ≡ (?> r).

3. Kleene iteration over lookarounds is equivalent to ε: (?> r)∗ ≡ ε.

4. Union distributes over lookarounds: (?> r + s) ≡ (?> r) + (?> s).

5. Lookaheads can be flattened: (?>(?> r) ⋅ s) ≡ (?> r) ⋅ (?> s).

6. Lookaheads can be flattened in the presence of wildcards: (?> r ⋅ (?> s) ⋅Σ∗) ≡

(?> r ⋅ s).

7. The union of positive and negative lookaheads can be simplified: (?> r)+(?/> r) ≡

ε.

8. Positive and negative lookaheads cannot be matched together: (?> r)⋅(?/> r) ≡ ∅

9. For predicates p1 and p2: (?>p1r1)p2r2 ≡ (p1 ∩ p2)(?> r1)r2.

61

Proof. These properties can be proved in a straightforward manner using the formal

semantics of lookaround expressions. To demonstrate, we prove the first one.

Suppose w, [i, j] ⊧ (?> r) ⋅ (?> s). Then, there exists i ≤ k ≤ j such that w, [i, k] ⊧

(?> r) and w, [k, j] ⊧ (?> s). By the semantics of lookahead, it must be that i = k

and k = j. Thus, we have w, [i, i] ⊧ (?> r) and w, [i, i] ⊧ (?> s). From the semantics

of ⋅ we obtain that w, [i, i] ⊧ (?> s) ⋅ (?> r). Since i = j, this is the same as w, [i, j] ⊧

(?> s) ⋅ (?> r). This shows that (?> r) ⋅ (?> s)) ⊑ (?> s) ⋅ (?> r). By interchanging the

roles of r and s, we can prove the other direction.

The intuition for property (5) regarding the flattening of lookarounds is that both

expressions describe the requirement that both r and s have a match at location

[i, ∣w∣] (if we interpret them at position i).

Note that (?> r ⋅ (?> s)) cannot be simplified to (?> r ⋅ s). For example, (?>ab ⋅

(?> cd)) cannot be true at any position i because ab has to extend to the end of the

string where (?> cd) cannot hold. So, this regex cannot be equivalent to (?>abcd).

Another caveat is the following: Suppose u ∈ JrK and v ∈ JsK. We cannot, in

general, expect that u ⋅ v ∈ Jr ⋅ sK. This is because lookaround expressions are able

to “view” the entire string. As a concrete example, consider r = (?>(aa)∗), s = a∗,

u = ε, v = a.

The purpose of verifying these properties is to streamline reasoning about regular

expressions with lookarounds into an equational manner when possible. We suggest

two motivating examples where such reasoning could be used.

Example 3.6 (Rewriting Anchors). The equational reasoning framework can be

used to reason about regular expressions in which the only lookarounds that occur

are the start-of-string (^) and end-of-string anchors ($). In addition to the results

62

proven above, we need to use the additional property a ⋅ ^ ≡ $ ⋅ a ≡ ∅, for every a ∈ Σ.

Given an expression r whose only lookarounds are ^ and $, one could use equa-

tional reasoning to rewrite it as r1 + ^r2 + r3$ + ^r4$ (where some of them maybe ∅).

This could be proven by induction on the structure of r. For example, if r and s have

already been rewritten in the above manner, we could use distributivity to split the

following concatenation into 16 terms.

(r1 + ^r2 + r3$ + ^r4$) ⋅ (s1 + ^s2 + s3$ + ^s4$)

Terms like r1 ⋅ s1, ^r2s1, r1s3$, ^r2s3$ do not need to be simplified further. However,

terms such as r1^s2, r3$^s2, etc can be simplified using the additional axioms. For

example, we can write

r1^s2 ≡ r1^ν(s2) ≡ r1ν(s2)^

where the notation ν(r) denotes ε if ε ∈ JrK and ∅ otherwise.

Example 3.7 (Eliminating Bounded Lookarounds). An expression r is bounded

if the maximum length of a string w ∈ JrK is finite. For example, the regular expression

a + ab is bounded, but the expression a∗ is not. If the expressions appearing inside

lookarounds are bounded, then they could be eliminated. The key equation enabling

this transformation is

(?>σ1r1)σ2r2 ≡ (σ1 ∩ σ2)(?> r1)r2

, where σ1, σ2 are predicates. In PCRE notation, we write [m-n] to denote the

predicate matching characters in the interval from m to n. Consider the regex

(?> [1-5][2-6])[5-7][6-8] . We observe that the intersection of [1-5] and [5-7] is

5 . Thus, we can apply the equation above to rewrite the regex as 5(?> [2-6])[6-8] .

We can use it again to rewrite the regex as 56 .

63

One could show that if r is without lookarounds, then there exists σi ∈ P such

that r ≡ ν(r) + ∑σi ⋅ ri, where the notation ν is as in the last example. This form

‘exposes’ the predicate at the front of each expression, and allows applying the above

equation. This is guaranteed to terminate if the lookaround consists of a bounded

expression.

3.5 Oracles for Lookaround Assertions

In this section, we will assume that relevant information about lookaround assertions

can be accessed via oracle queries. We provide an automata-theoretic framework de-

scribing how such regular expressions with oracle queries can be handled. To do this,

we first make the notion of strings augmented with oracle valuations explicit. An

extension of regular expressions which can query these oracles is presented. The idea

is to replace lookaround expressions with these oracle queries, so that information

involving lookarounds can be answered using an oracle. These oracle-based expres-

sions can be matched using a model that is an extension of NFAs. We show that

these NFAs can be simulated using a purely functional algorithm. Similar to a usual

NFA, this simulation is done in a single left-to-right pass, consuming the input word

(including the oracle valuations) one character at a time, taking O(m) time at each

step, where m is the size of the regular expression.

3.5.1 Oracle Strings and Oracle Regular Expressions

Suppose V is a finite set of (Boolean) variables. A valuation of V is a truth assignment

to the elements of V . We will denote the set of valuations of V as 2V . An o-string is

a pair ⟨w,β⟩ where w ∈ Σ∗ and β ∈ (2V)∗ such that ∣β∣ = ∣w∣ + 1. The set of o-strings

over the alphabet Σ and variables V is denoted O(Σ, V).

64

These represent strings together with additional information accessible via oracle

queries. Suppose w = a0 ⋅ a1⋯an−1 and β = β0 ⋅ β1 ⋅ β2⋯βn. Informally, we wish to

associate each character ai with the oracle valuation βi to its left and βi+1 to its right.

Thus, the o-string ⟨w,β⟩ could be more visually represented as

β0 a0 β1 a1 β2 a2 β3 ⋯βn−1 an−1 βn .

This explains the constraints on the length of the components of o-strings. The length

of the o-string ⟨w,β⟩ written ∣⟨w,β⟩∣ is defined to be ∣w∣. Note that this means that

there may be more than one o-string of length 0, since such an o-string consists of a

single oracle valuation.

In Coq, we define o-strings simply as pairs of lists. The additional constraints on

the lengths of the components are enforced using a separate predicate. We do this

in order to avoid working with dependent types which can sometimes complicate our

terms and proof scripts.

Definition valuation : Type := list bool.

Definition ostring : Type := (list A) * (list valuation).

Definition outer_length_wf (s : ostring) : Prop :=

length (fst s) + 1 = length (snd s).

Definition inner_length_wf (s : ostring) : Prop :=

forall u v : valuation,

In u (snd s) -> In v (snd s) -> length u = length v.

Definition ostring_wf (s : ostring) : Prop :=

outer_length_wf s /\ inner_length_wf s.

Definition olength (s : ostring) : nat := length (fst s).

65

When slicing o-strings, we must take into account the oracle valuations at the

boundaries. Suppose we have an ⟨w,β⟩ ∈ O(Σ, V) with w = a0⋯an−1 and β = β0 ⋅

β1⋯βn. For 0 ≤ i ≤ j ≤ n, we define the slice of ⟨w,β⟩ at window [i, j], denoted by

⟨w,β⟩[i, j], as the o-string (w,β′) where β′ = βi ⋅ βi+1⋯βj−1 ⋅ βj and w = ai ⋅ ai+1⋯aj−1.

In particular, when i = j, w is the empty string ε and β′ is the singleton string βi.

Note that the slice [i, j] can be obtained by taking the slice [0, j] to obtain ⟨w′, β′⟩

and then selecting the slice [i, ∣w′∣]. This is how we encode the notion of slicing in

our Coq formalization. We define the functions oskipn and ofirstn corresponding to

the slices [i, ∣w∣] and [0, i] respectively. These mirror the definition of the functions

skipn and firstn in the Coq standard library, and satisfy analogous lemmas. Note the

slight asymmetry in the definitions below, resulting from the mismatch in the lengths

of the components of o-strings.

Definition ofirstn (n : nat) (s : ostring) : ostring :=

(firstn n (fst s), firstn (S n) (snd s)).

Definition oskipn (n : nat) (s : ostring) : ostring :=

(skipn n (fst s), skipn (min n (length (fst s))) (snd s)).

The concatenation operation on O(Σ, V) needs to be defined carefully so that it

matches the way we intend to use these strings. The concatenation of two elements of

O(Σ, V) is only defined if the oracle-values agree. Formally, suppose ⟨w1, β ⋅u⟩, ⟨w2, v ⋅

γ⟩ ∈ O(Σ, V) with u, v ∈ 2V , then ⟨w1, β ⋅ u⟩ ⋅ ⟨w2, v ⋅ γ⟩ is defined iff u = v. The

concatenation ⟨w1, β ⋅ u⟩ ⋅ ⟨w2, u ⋅ γ⟩ is defined to be ⟨w1w2, β ⋅ u ⋅ γ⟩. We extend this

definition in a natural way to concatenation of sets of o-strings. Kleene-iteration of

an o-string (or a set of o-strings) is also defined in an analogous manner, respecting

the agreement of oracle valuations at concatenation boundaries.

66

Definition 3.8 (Oracle Regular Expressions). The set OReg of oracle regular

expressions is defined with the following grammar:

R,S ∶∶= ε ∣ σ ∈ P ∣ Q+(v ∈ V) ∣ Q-(v ∈ V) ∣ R ⋅ S ∣ R + S ∣ R∗.

Instead of lookaheads as in LReg, oracle regular expressions have positive queries

of the form Q+(v) or negative queries of the form Q-(v), where v ∈ V . These queries

express assertions on the accompanying oracle valuations. The semantics of a OReg

expression R is given in terms of JRK, a subset of O(Σ, V). This language is defined

inductively as follows:

JεK = {⟨ε, β0⟩ ∣ β0 ∈ 2V }

JσK = {⟨a, β0 ⋅ β1⟩ ∣ a ∈ Σ, β0, β1 ∈ 2V , σ(a) = 1}

JQ+(v)K = {⟨ε, β0⟩ ∣ β0 ∈ 2V , β0[v] = 1}

JQ-(v)K = {⟨ε, β0⟩ ∣ β0 ∈ 2V , β0[v] = 0}

JR + SK = JRK ∪ JSK

JR ⋅ SK = JRK ⋅ JSK

JR∗K = JRK∗

Example 3.9. Consider the oregex r1 = Q+(v0)⋅a+b ⋅Q+(v1). Here, the queries express

the constraint that the valuation corresponding to the variable v0 at the beginning of

the string, and the valuation corresponding to the variable v1 at the end of the string

are both true. Concretely, we have ⟨w,β⟩ ∈ JrK iff w ∈ Ja+bK and β0[v0] = β∣w∣[v1] = 1.

Consider the oregex r2 = c ⋅ (Q-(v2)Σ)+. Here, the negative query Q-(v2) asserts

that the valuation corresponding to the variable v2 be false before each character that

matches the subexpression Σ. More concretely, suppose ⟨w,β⟩ ∈ Jr2K. Then, we have

that w0 = c and ∣w∣ > 1 (enforced by the Kleene plus). For 1 ≤ i ≤ ∣w∣ − 1, we must

have βi[v2] = 0. Note that no constraints are placed on β0 or β∣w∣.

67

Inductive ORegex : Type :=

| OEpsilon : ORegex

| OCharClass : (A -> bool) -> ORegex

| OConcat : ORegex -> ORegex -> ORegex

| OUnion : ORegex -> ORegex -> ORegex

| OStar : ORegex -> ORegex

| OQueryPos : nat -> ORegex

| OQueryNeg : nat -> ORegex.

In our Coq formalization, we repre-

sent objects of type OReg as an induc-

tive type, with constructors shown on the

left. In order to represent membership

in the set JRK, we work with a satis-

faction relation match oregex. This is

similar to our handling of LReg, except

that the complication involving handling

negation does not appear here. The case

for concatenation and Kleene iteration, however, is interesting. This is because con-

catenation on o-strings is defined only when the oracle valuations agree. We sidestep

this issue by phrasing the concatenation in terms of the slicing operation. In partic-

ular, we say that ⟨w,β⟩ ∈ JR ⋅ SK iff there exists an i such that ⟨w,β⟩[0, i] ∈ JRK and

⟨w,β⟩[i, ∣w∣] ∈ JSK. The Kleene iteration is handled in a similar manner. These two

cases are shown below.

...

| omatch_concat : forall (r1 r2 : ORegex) (os : ostring) (n : nat),

match_oregex r1 (ofirstn n os) -> match_oregex r2 (oskipn n os)

-> match_oregex (OConcat r1 r2) os

...

| omatch_star_cons : forall (r : ORegex) (os : ostring) (n : nat),

match_oregex r (ofirstn n os) -> match_oregex (OStar r) (oskipn n os)

-> match_oregex (OStar r) os

...

68

3.5.2 Choosing appropriate oracle valuations

In this section, we will make concrete the connection between LReg and OReg. In

particular, we will show that if the lookaround assertions are pre-evaluated, then they

could be used as valuations for o-strings which could be supplied to an oracle regular

expression obtained by replacing the lookarounds with queries.

Definition 3.10 (Maximal Lookarounds, Arity). Let r ∈ LReg be an expression.

The maximal lookarounds of r, written maxLk(r) is a list of tuples of type {▷,◁} ×

LReg. It is formally defined as follows:

maxLk((?> r)) = [(◁, r)] maxLk((?< r)) = [(▷, r)]

maxLk((?/> r)) = [(◁, r)] maxLk((?/< r)) = [(▷, r)]

maxLk(r) = [], if r ∈ {ε, (σ ∈ P)}

maxLk(r1 ○ r2) = maxLk(r1) ++ maxLk(r2), if ○ ∈ {⋅,+}

maxLk(r∗) = maxLk(r)

where the notation ++ refers to list concatenation.

If (◁, s) or (▷, s) appears in maxLk(r), then we say that s is amaximal lookaround

of r. The arity of an expression r is the number of its maximal lookarounds, i.e.,

arity(r) = ∣maxLk(r)∣.

Note that the directions associated with the maximal lookarounds are counter-

intuitive. As we will see in subsection 3.7.1, lookbehinds need the scanning of the

string from left to right, while lookaheads need the scanning from right to left.

Example 3.11. Consider the regular expression r = (?<=c((?!\d\d).)+)(a+)b(?=.*d.*e)

in PCRE notation. In our notation, we can write this as

(?<Σ∗c ⋅ ((?/> \d\dΣ∗)Σ)+) ⋅ a+b ⋅ (?>Σ∗dΣ∗eΣ∗).

69

The maximal lookarounds of r aremaxLk(r) = [m0,m1] wherem0 = (▷,Σ∗c⋅((?/> \d\dΣ∗)Σ)+)

and m1 = (◁,Σ∗dΣ∗eΣ∗). Therefore, we have arity(r) = 2. Note that even though

(?/> \d\dΣ∗) is a lookahead that appears as a subexpression, it is not considered

maximal.

Definition 3.12 (Abstraction). The abstraction abstract(r) of a regular expres-

sion r is obtained by replacing each maximal lookaround with Q+(v) or Q-(v). The

variables here are chosen from the set V = {vi ∣ i < ∣arity(r)∣}. Formally, abstract(r) is

defined to be abstract0(r), and given i ∈ N, we define abstracti(r) as follows:

abstracti(r) = r, if r ∈ {ε, (σ ∈ P)}

abstracti(r1 ○ r2) = abstracti(r1) ○ abstracti+arity(r1)(r2), if ○ ∈ {⋅,+}

abstracti(r∗) = abstracti(r)∗

abstracti(r) = Q+(vi), if r ∈ {(?> s), (?< s)}

abstracti(r) = Q-(vi), if r ∈ {(?/> s), (?/< s)}

Example 3.13. Let us consider again the expression r from Example 3.11. The

abstraction of r is given by abstract(r) = abstract0(r) = Q+(v0) ⋅ a+b ⋅ Q+(v1). If we

consider the subexpression s = Σ∗c ⋅((?/> \d\dΣ∗)Σ)+ of r, then we have abstract(s) =

Σ∗c ⋅ (Q-(v0) ⋅Σ)+.

Next, we define the notion of tapes for expressions and lookarounds, which are

sequences of truth values obtained by incrementally scanning the string.

Definition 3.14 (Tapes, Oracle Valuations). Let r ∈ LReg be an expression and

w ∈ Σ∗ be a string such that ∣w∣ = n. We define the left-to-right tape tape(▷, r,w)

and the right-to-left tape tape(◁, r,w) as sequences of length n + 1 over {0,1} such

70

that for each 0 ≤ i ≤ n, the i-th entry of the tape satisfies the following:

tape(▷, r,w)[i] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if w, [0, i] ⊧ r

0 if w, [0, i] /⊧ r
tape(◁, r,w)[i] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if w, [i, ∣w∣] ⊧ r

0 if w, [i, ∣w∣] /⊧ r

When there is no confusion, we will write tape to mean tape(▷).

We also extend the notion of tapes to OReg and maximal lookarounds. For s ∈

OReg with ⟨w,β⟩ ∈ O(Σ, V), we define tape(s, ⟨w,β⟩) in a similar manner as above,

indicating the truth values of the slices ⟨w,β⟩[0, i] for tape(▷) and ⟨w,β⟩[i, ∣w∣] for

tape(◁). Given a maximal lookaround of the form m = (d, r), where d ∈ {▷,◁} and

r ∈ LReg, we define tape((d, r)) in a natural way as tape((▷, r),w) = tape(▷, r,w)

and tape((◁, r),w) = tape(◁, r,w).

Let r ∈ LReg be of arity k. Let T be a collection of k tapes such that for each

0 ≤ i < k, tape T [i] = tape(maxLk(r)[i],w). Let V = v0, v1, . . . vk−1. The oracle

valuations for r on w, written oval(r,w) is the sequence of length ∣w∣ + 1 over 2V

obtained by transposing T . In other words,

oval(r,w)[i][vj] = T [j][i], for 0 ≤ i ≤ ∣w∣,0 ≤ j < k.

Example 3.15. Consider r from Example 3.11. The maximal lookaroundm0 searches

for the character c in the past followed by a non-empty sequence of characters satisfy-

ing certain conditions, while the maximal lookaround m1 searches for an occurrence

of the character d followed by the character e in the future. Below, we show the tapes

for tape(m0,w) and tape(m1,w) for an illustrative string w. The oracle valuations

oval(r,w) for r on w can be obtained by reading the table below in a column-wise

manner.

71

w c a b c 7 7 d c a a b 7 d a b e

tape(m0,w) 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

tape(m1,w) 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

In our Coq Formalization, we use the relation is lookaround tape to encode the

notion of tape for maximal lookarounds, (i.e., pairs {▷,◁}×LReg). The definition of

oval is instrumented using an additional index s which corresponds to the subscript

abstracts. This is necessary in order to formulate a stronger inductive hypothesis we

can induct on. Note also that we phrase this definition as a relation rather than a

function.

Definition oval_tapes_aux (e : @LRegex A) (w : list A)

(s : nat) (ts : list tape) : Prop :=

length ts >= s + arity e

/\ (forall t, In t ts -> length t = length w + 1)

/\ forall i t r, i < arity e

-> nth_error ts (s + i) = Some t

-> nth_error (maximal_lookarounds e) i = Some r

-> is_lookaround_tape r w t.

Definition is_oval_aux (r : @LRegex A) (w : list A)

(s : nat) (vs : list valuation) : Prop :=

exists ts, oval_tapes_aux r w s ts /\ vs = transpose (length w + 1) ts.

Definition is_oval (r : @LRegex A) (w : list A) (vs : list valuation) : Prop :=

is_oval_aux r w 0 vs.

The following lemma establishes the connection between LReg and OReg by choos-

ing the appropriate oracle valuations.

72

Lemma 3.16. Let r ∈ LReg and w ∈ Σ∗. Let β = oval(r,w). Then, the following

holds.

w, [i, j] ⊧ r ⇐⇒ ⟨w,β⟩[i, j] ∈ Jabstract(r)K

Thus, in order to match an expression r with lookarounds on w, we can first

evaluate the lookarounds to obtain the oracle valuations β = oval(r,w), and then

match the oracle regular expression abstract(r) on ⟨w,β⟩. This formalizes the key

idea behind our approach.

In Coq, this lemma is stated in terms of the ofirstn and oskipn functions. Recall

that the index s is used to keep track of the subscript of abstracts.

Lemma oracle_compose_aux (r : @LRegex A) (w : list A)

(s : nat) (vs : list valuation) :

is_oval_aux r w s vs

-> forall start delta, start + delta <= length w

-> match_regex r w start delta

<-> match_oregex (abstractAux s r) (ofirstn delta (oskipn start (w, vs))).

3.6 Purely Functional Matching of Oracle Expressions

In this section, we discuss how the oracle regular expressions can be matched on oracle

strings, i.e., the computation of tapes (from Definition 3.14 for the case of OReg. This

is very similar to the matching algorithm for ordinary regular expressions (without

queries or lookarounds), except that the queries need to be checked against the oracle

valuations.

The main difference between handling character-predicates and queries can be

understood by analyzing the case of concatenation. For example, consider the regular

73

expression σ1 ⋅σ2 obtained by concatenating two predicates σ1 and σ2. This matches a

length 2 string where the first character satisfies σ1 and the second character satisfies

σ2. In contrast, the oracle regular expression Q+(v1) ⋅ Q+(v2) matches an o-string

⟨ε, β0⟩, where β0[v1] = β1[v2] = 1. Thus, the concatenated queries match the same

oracle valuation. An alternative approach would be to use Oracle NFAs, in which the

transitions are guarded by queries (see [28]).

We use a purely functional approach based on marked regular expressions. The

notion of marked regular expressions for classical regular expressions is discussed in

[33] and [32]. In [98], the authors formalize this approach in Isabelle, and utilize

them in order to decide equivalence. Here, we extend this approach to oracle regular

expressions, and formalize it in Coq.

The marked regular expression approach directly deals with the syntax tree of

regular expressions instead of building an explicit NFA. This is particularly pleas-

ant in functional programming languages where we can represent the expressions as

inductive types and use pattern matching to access the subexpressions. The marks

placed on the character classes of the regular expression are used to keep track of the

active states of the corresponding NFA.

Definition 3.17 (Marked Oracle Regular Expressions). The setMReg ofmarked

oracle regular expressions is defined with the following grammar:

M,N ∶∶= ε ∣ σ ∣ σ ∣ Q+(v) ∣ Q-(v) ∣M ⋅N ∣M +N ∣M∗

where σ ∈ P and v ∈ V . We call σ (respectively, σ) a marked (respectively, unmarked)

predicate.

We extend the terminology above to say that an expression is unmarked if it

contains no marked predicates. Given r ∈ OReg, we can view it as an element of

74

MReg in which none of the predicates are marked. This expression is written as

toMarked(r). Conversely, given m ∈ MReg, we can remove all the marks from it to

obtain the expression strip(m) ∈ OReg. For each m ∈MReg, we define a subset ⟪r⟫ of

O(Σ, V) as follows:

⟪r⟫ = ∅ if r ∈ {ε, σ,Q+(v),Q-(v)}

⟪σ⟫ = JσK

⟪e1 ∪ e2⟫ = ⟪e1⟫ ∪ ⟪e2⟫

⟪e1 ⋅ e2⟫ = ⟪e1⟫ ⋅ Jstrip(e2)K ∪ ⟪e2⟫

⟪e∗⟫ = ⟪e⟫ ⋅ Jstrip(e)K∗

Example 3.18. The intuition for the language of ⟪r⟫ is that it represents the set

of o-strings that could be matched by starting from the current mark. For example,

consider the expressions m1 = abc, m2 = abc and m3 = abc. Let ⟨w,β⟩ be an o-string.

We have ⟨w,β⟩ ∈ ⟪m1⟫ iff w = abc, ⟨w,β⟩ ∈ ⟪m2⟫ iff w = bc and ⟨w,β⟩ ∈ ⟪m3⟫ iff

w = abc or w = c. On the other hand, if m4 = abc with no marks, then ⟪m4⟫ = ∅.

This can be understood by realizing that this represents a scenario where there are

no active states in the simulated NFA. In general, we can observe that for unmarked

m, the language ⟪m⟫ is ∅.

The queries in expressions in MReg do not carry any marks, but they can still

express constraints on valuations if they occur after a marked predicate. For instance,

consider m5 = aQ+(v)bc and m6 = Q+(v)abc. Given ⟨w,β⟩ ∈ ⟪m5⟫, we must have

w = abc and β1[v] = 1. However, for ⟨w,β⟩ ∈ ⟪m6⟫, we have no constraints on β.

In Coq, we define an inductive type MRegex to represent the set MReg. Similar

to the case of LReg and OReg, we represent the notion of ⟪⋅⟫ using a satisfaction

relation encoded as the inductive type match mregex.

75

3.6.1 Operations on Marked Expressions

Our matching algorithm operates by transforming marked regular expressions. The

functions nullable and final are used to extract information about the state machine

that is being simulated. The functions follow and read presented in Figure 3.2 ma-

nipulate the marks without changing the underlying regex.

Let us start by characterizing the functions nullable and final. In the following,

we call a marked predicate σ spurious if the predicate σ is unsatisfiable. If m has no

such predicates, we say m has no spurious marks.

Lemma 3.19. Let m ∈MReg. Then, the following holds.

1. For any β0 ∈ 2V , nullable(β0,m) = 1 iff ⟨ε, β0⟩ ∈ Jstrip(m)K

2. Suppose m has no spurious marks and β1 ∈ 2V . If final(β1,m) = 1, then there

exists a ∈ Σ such that for all β0 ∈ 2V , ⟨a, β0β1⟩ ∈ ⟪m⟫

3. Let a ∈ Σ and β0, β1 ∈ 2V . If ⟨a, β0β1⟩ ∈ ⟪m⟫, then final(β1,m) = 1

Example 3.20. Consider the expressions m6 = (a + ε)Q+(v), and m7 = (a + ε)Q+(v).

Since strip(m6) = strip(m7), we can see that nullable(β0,m6) = nullable(β0,m7) for

any choice of β0. In particular, nullable(β0,m6) = 1 iff β0[v] = 1. Here, the function

nullable tests whether the o-string ⟨ε, β0⟩ is in Jstrip(m6)K.

Informally, the function final checks if there is a mark on a predicate that is

in the final position, and whether the subsequent queries can be satisfied by the

valuation provided. Thus, if β1[v] = 1, we do have final(β1,m7) = 1. For m6, we have

final(β0,m6) = 0 for any β0 since there are no marks in m6. Similarly, final(β0, (abc +

ε)Q+(v)) = 0, since the marked character a is not in a final position. Also, final(β0, (a+

ε)) = 1 for any β0 since there are no queries imposing constraints on the valuations.

76

nullable ∶ 2V ×MReg→ B

nullable(β, ε) = 1 nullable(β,m∗) = 1

nullable(β, σ) = 0 nullable(β, σ) = 0

nullable(β,Q+
(v)) = β[v] nullable(β,Q-

(v)) = ¬β[v]

nullable(β,m1 +m2) = nullable(β,m1) ∨ nullable(β,m2)

nullable(β,m1 ⋅m2) = nullable(β,m1) ∧ nullable(β,m2)

final ∶ 2V ×MReg→ B

final(β, ε) = 0 final(β,m∗) = final(β,m)

final(β, σ) = 0 final(β, σ) = 1

final(β,Q+
(v)) = 0 final(β,Q-

(v)) = 0

final(β,m1 +m2) = final(β,m1) ∨ final(β,m2)

final(β,m1 ⋅m2) = (final(β,m1) ∧ nullable(β,m2)) ∨ final(β,m2)

follow ∶ B × 2V ×MReg→MReg

follow(β, ε) = ε

follow(β,Q+
(v)) = Q+

(v) follow(β,Q-
(v)) = Q-

(v)

follow(b, β, σ) = follow(b, β, σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

σ if b = 1

σ otherwise

follow(b, β,m1 +m2) = follow(b, β,m1) + follow(b, β,m2)

follow(b, β,m1 ⋅m2) = follow(b, β,m1) ⋅ follow(b
′, β,m2)

where b′ = final(β,m1) ∨ (b ∧ nullable(β,m1))

follow(b, β,m∗) = (follow(b ∨ final(β,m), β,m))∗

read ∶ Σ ×MReg→MReg

read(a, ε) = ε

read(a,Q+
(v)) = Q+

(v) read(a,Q-
(v)) = Q-

(v)

read(a, σ) = σ read(a, σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

σ if σ(a) = 1

σ otherwise

read(a,m1 +m2) = read(a,m1) + read(a,m2)

read(a,m1 ⋅m2) = read(a,m1) ⋅ read(a,m2)

read(a,m∗) = read(a,m)∗

Figure 3.2 : Operations on MReg expressions

77

Next, we characterize the function read. The function read(a, ⋅) has the effect of

removing the marks from marked predicates σ that do not satisfy σ(a) = 1. Roughly,

this has the effect of removing from ⟪m⟫ the o-strings that do not start with the

character a.

Lemma 3.21. Let m ∈MReg and a ∈ Σ. Then, the following holds.

1. ⟪read(a,m)⟫ ⊆ ⟪m⟫

2. Suppose ⟨a ⋅w,β⟩ ∈ ⟪m⟫. Then, ⟨a ⋅w,β⟩ ∈ ⟪read(a,m)⟫

3. Suppose a′ ∈ Σ and ⟨a′ ⋅w,β⟩ ∈ ⟪read(a,m)⟫. Then, ⟨a ⋅w,β⟩ ∈ ⟪m⟫

4. The expression read(a,m) has no spurious marks

Example 3.22. Let us use the predicate \d to denote the set of digits. Consider the

expression m = \dabc. We have read(7,m) =m since the digit 7 satisfies the predicate

\d . On the other hand, read(a,m) = \dabc – the mark is lost since a does not satisfy

the predicate.

In order to prove the properties of the function follow, it is helpful to define two

other functions init and shift, whose definitions we have provided in Figure 3.3. These

two functions are related in the following way:

follow(0, β0,m) = shift(β0,m)

follow(1, β0,m) = init(β0, shift(β0,m))

These equivalences can be proven using a straightforward induction once the idem-

potence of the function init is shown. Informally, the function init is used to place

marks at initial positions in the expression, and the function shift is used to move the

marks to the next positions. This intuition is formalized in the following lemmas.

78

init ∶ 2V ×MReg→MReg

init(β, r) = r, if r ∈ {ε,Q+
(v),Q-

(v)}

init(β, σ) = σ

init(β, σ) = σ

init(β,m1 +m2) = init(β,m1) + init(β,m2)

init(β,m∗) = init(β,m)∗

init(β,m1 ⋅m2) = init(β,m1) ⋅m
′

2 ,where

m′2 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

init(β,m2) if nullable(β,m1) = 1

m2 otherwise

shift ∶ 2V ×MReg→MReg

shift(β, r) = r, if r ∈ {ε,Q+
(v),Q-

(v)}

shift(β, σ) = σ

shift(β, σ) = σ

shift(β,m1 +m2) = shift(β,m1) + shift(β,m2)

shift(β,m1 ⋅m2) = shift(β,m1) ⋅m
′′

2 , where

m′2 = shift(β,m2), and

m′′2 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

init(β,m′2) if final(β,m1) = 1

m′2 otherwise

shift(β,m∗) = (m′′)∗, where

m′ = shift(β,m), and

m′′ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

init(β,m′) if final(β,m) = 1

m′ otherwise

Figure 3.3 : The init and shift functions for MReg

Lemma 3.23. Let m ∈ MReg and β0, β∗ ∈ 2V , β ∈ (2V)∗ and w ∈ Σ∗. Then, the

function init satisfies the following properties.

1. ⟪m⟫ ⊆ ⟪init(β0,m)⟫

2. Suppose w ≠ ε. Suppose ⟨w,β0 ⋅β⟩ ∈ Jstrip(m)K. Then, ⟨w,β0 ⋅β⟩ ∈ ⟪init(β0,m)⟫.

3. Suppose ⟨w,β∗ ⋅ β⟩ ∈ ⟪init(β0,m)⟫. Then either ⟨w,β∗ ⋅ β⟩ ∈ ⟪m⟫ or ⟨w,β0 ⋅ β⟩ ∈

Jstrip(m)K.

Next, let β1 ∈ 2V and a0 ∈ Σ. Then, the function shift satisfies the following properties.

1. Suppose w ≠ ε and ⟨a0 ⋅w,β0β1 ⋅ β⟩ ∈ ⟪m⟫. Then, ⟨w,β1 ⋅ β⟩ ∈ ⟪shift(β1,m)⟫.

2. Suppose ⟨w,β∗ ⋅ β⟩ ∈ ⟪shift(β1,m)⟫. Then, there exists some a0 ∈ Σ such that

forall β0 ∈ 2V , ⟨a0 ⋅w,β0β1 ⋅ β⟩ ∈ ⟪m⟫.

79

Example 3.24. We have init(β0, abc + de) = abc + de for all β0. Shifting would move

each mark to the next position, i.e., shift(β0, abc + de) = abc + de. When there are

queries guarding the expression, the supplied valuation must satisfy the query in

order to place the mark. For example, init(β0,Q+(v)abc) = Q+(v)abc only β0[v] = 1.

Similarly, shift(β0, aQ+(v)bc) = aQ+(v)bc only if β0[v] = 1.

3.6.2 Caching final and nullable for Marked Expressions

Inductive CMRegex : Type :=

| MkCMRegex : bool -> bool -> CMRe -> CMRegex

with CMRe : Type :=

| CMEpsilon : CMRe

| CMCharClass : (A -> bool) -> CMRe

| CMQueryPos : nat -> CMRe

| CMQueryNeg : nat -> CMRe

| CMConcat : CMRegex -> CMRegex -> CMRe

| CMUnion : CMRegex -> CMRegex -> CMRe

| CMStar : CMRegex -> CMRe.

Definition cNullable (r : CMRegex) : bool :=

match r with | MkCMRegex b _ _ => b end.

Definition cFinal (r : CMRegex) : bool :=

match r with | MkCMRegex _ b _ => b end.

Definition cRe (r : CMRegex) : CMRe :=

match r with | MkCMRegex _ _ re => re end.

We wish to compute follow(m)

in O(∣m∣) time. However, trans-

lating the definitions from Fig-

ure 3.2 will result in an algo-

rithm that would take O(∣m∣2)

time in the worst case. This

is because the functions final

and nullable are called repeat-

edly on the same subexpres-

sions. This can be avoided by

augmenting the type of expres-

sions to store these additional

results. We call these expres-

sions marked expressions with

caching, denoted by CMReg. In

Coq, we define the mutually in-

ductive types CMRegex and CMRe

as follows. Note that with this definition, the functions cFinal and cNullable are simply

80

field accessors which run in O(1) time, which store the results of final and nullable

respectively.

An interesting consideration here is the induction principle that allows us to prove

properties involving CMRegex and CMRe which are mutually recursive. The auto-

generated induction principle is insufficient since the subexpressions of CMRe (respec-

tively, CMRegex) are nested inside an additional layer of CMRegex (respectively, CMRe).

We write our custom induction principle in the term language, which is later used to

prove properties.

Given c ∈ CMReg, we write unCache(c) ∈ MReg to denote the underlying marked

regular expression. We say that c is synced to a valuation β0 ∈ V if cNullable(c) =

nullable(β0,unCache(c)) and cFinal(c) = final(β0,unCache(c)). In order to streamline

our functions and proofs, we define smart constructors mkEps, mkCharClass, mkQPos,

mkQNeg, mkConcat, mkUnion and mkStar which propagate the caching information.

These have the property that if the supplied arguments are synced with respect

to some valuation, then so is the resulting expression. The explicit definition and

property for mkConcat are shown. Compare this with the cases of concatenation in

the definition of nullable and final in Figure 3.2.

Definition mkConcat (r1 r2 : CMRegex) : CMRegex := MkCMRegex

(cNullable r1 && cNullable r2)

((cFinal r1 && cNullable r2) || cFinal r2)

(CMConcat r1 r2).

We manipulate the cached expressions using the functions sync, cFollow and cRead

as defined in Figure 3.4. Their relationship with the corresponding functions forMReg

is summarized in the following lemmas.

81

sync ∶ 2V × CMReg→ CMReg

sync(β, ε) = mkEps

sync(β, σ) = mkCharClass(0, σ)

sync(β, σ) = mkCharClass(1, σ)

sync(β,Q+
(v)) = mkQPos(β[v], v)

sync(β,Q-
(v)) = mkQNeg(β[v], v)

sync(β,m1 +m2) = mkUnion(sync(β,m1), sync(β,m2))

sync(β,m1 ⋅m2) = mkConcat(sync(β,m1), sync(β,m2))

sync(β,m∗) = mkStar(sync(β,m))

cRead ∶ Σ × CMReg→ CMReg

cRead(a, ε) = mkEps

cRead(a, σ) = mkCharClass(0, σ)

cRead(a, σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

mkCharClass(1, σ) if σ(a) = 1

mkCharClass(0, σ) otherwise

cRead(a,Q+
(v)) = mkQPos(cNullable(Q+

(v)), v)

cRead(a,Q-
(v)) = mkQNeg(cNullable(Q-

(v)), v)

cRead(a,m1 +m2) =

mkUnion(cRead(a,m1), cRead(a,m2))

cRead(a,m1 ⋅m2) =

mkConcat(cRead(a,m1), cRead(a,m2))

cRead(a,m∗) = mkStar(cRead(a,m))

cFollow ∶ B × CMReg→ CMReg

cFollow(b, ε) = mkEps

cFollow(b, σ) = cFollow(b, σ) = mkCharClass(b, σ)

cFollow(b,Q+
(v)) = mkQPos(cNullable(Q+

(v)), v)

cFollow(b,Q-
(v)) = mkQNeg(cNullable(Q-

(v)), v)

cFollow(b,m1 +m2) = mkUnion(cFollow(b,m1), cFollow(b,m2))

cFollow(b,m1 ⋅m2) = mkConcat(cFollow(b,m1), cFollow(b
′,m2))

where b′ = cFinal(m1) ∨ (b ∧ cNullable(m1))

cFollow(b,m∗) = mkStar(cFollow(b ∨ cFinal(m),m))

Figure 3.4 : Operations on CMReg expressions

82

Lemma 3.25. Let m ∈MReg and β0 ∈ 2V . Then, the following holds.

1. The expression sync(β0,m) is synced with respect to β0 and it preserves the

underlying marked expression, i.e., unCache(sync(β0,m)) =m.

2. If m is synced with respect to β0, then so is cRead(β0,m).

3. The function cRead simulates read on the underlying MReg expression, i.e.,

unCache(cRead(a,m)) = read(a,unCache(m))

4. Suppose m is synced to β0. Then, the function cFollow simulates follow on the

underlying MReg expression, i.e.,

unCache(cFollow(b,m)) = follow(b, β0,unCache(m)).

These lemmas establish the correspondence between the operations on MReg and

their cached version CMReg.

3.6.3 Consuming Oracle Strings

We define the function consume, whose effect is to simulate moving tokens in the cor-

responding NFA whose paths are labelled by the supplied string. We write toCached ∶

MReg→ CMReg to denote the function which initializes the caching information to 0

for a given expression in MReg.

Definition 3.26 (Consuming OStrings). Let r ∈ OReg, and w = a0 ⋅ a1 ⋅ . . . ⋅ an−1 ∈

Σ∗, and β = β0 ⋅β1 ⋅ . . . ⋅βn ∈ (2V)∗. We define the series of expressions m0,m1 . . .mn ∈

83

CMReg as follows.

m0 = sync(β0, toCached(toMarked(r)))

m1 = sync(β1, cRead(a0, cFollow(1,m0)))

mi+1 = sync(βi+1, cRead(ai, cFollow(0,mi)))

We define consume(r, ⟨w,β⟩) =mn.

Note that in the above definition, we apply cFollow with 1 in order to obtain m1

but with 0 for the subsequent expressions. This is because applying cFollow with 1

has the effect of placing the marks at the initial positions, as explained in subsection

3.6.1. For the subsequent expressions, we use 0 since we only need to move the marks

ahead.

The function oMatch defined below computes, in a streaming manner, the tape

obtained by scanning the input oracle-string from left-to-right.

Definition 3.27 (oMatch on OStrings). Let r ∈ OReg, and w = a0 ⋅ a1 ⋅ . . . ⋅ an−1 ∈ Σ∗,

and β = β0 ⋅ β1 ⋅ . . . ⋅ βn ∈ (2V)∗. Define b0 = cNullable(consume(r, ⟨ε, β0⟩)), m1 =

consume(r, ⟨a0, β0 ⋅ β1⟩) and b1 = cFinal(m1). Define oMatch(⟨w,β⟩) ∈ Bn+1 as

oMatch(⟨w,β⟩) = [b0] if ∣w∣ = 0

oMatch(⟨w,β⟩) = [b0, b1] if ∣w∣ = 1

oMatch(⟨w,β⟩) = [b0, b1] ++ oMatch′(m1, a1 ⋅ a2⋯, β2 ⋅ β3⋯) if ∣w∣ > 1

where oMatch′ is defined as follows.

oMatch′(m, [], []) = [cFinal(m)]

oMatch′(m,a ⋅w,β∗ ⋅ β) = [cFinal(m)] ++ oMatch′(m′,w, β)

where m′ = sync(β∗, cRead(a, cFollow(0,m)))

84

wi a a b

βi[v] 1 1 0 0

m′
i Qaa∗bQ Qa(a)∗bQ Qa(a)∗bQ Qaa∗bQ

mi+1 Qaa∗bQ Qa(a)∗bQ Qaa∗bQ

bi 0 0 0 0

Table 3.1 : Matching the ORegex Q+(v)a ⋅a∗ ⋅ bQ+(v) on the ostring ⟨aab,1100⟩ using

Marked Regular Expressions

Theorem 3.28 (Correctness of oMatch). Let r ∈ OReg, and ⟨w,β⟩ ∈ O(Σ, V).

Then, the list oMatch(⟨w,β⟩) records whether ⟨w,β⟩[0, i] ∈ JrK, i.e.,

oMatch(r, ⟨w,β⟩) = tape(r, ⟨w,β⟩).

Proof. We can establish by induction that b0 = cNullable(consume(r, ⟨w,β⟩[0,0]))

and bi+1 = cFinal(consume(r, ⟨w,β⟩[0, i + 1])). The other key facts needed are the

following: (1) If ∣w∣ = 0, then ⟨w,β⟩ ∈ JrK iff cNullable(m) = 1, and (2) If ∣w∣ > 0,

then ⟨w,β⟩ ∈ JrK iff cFinal(m) = 1. These would follow from the properties of nullable

and final (Lemma 3.19), and the fact that cFollow and cRead simulate the functions

cFollow and cRead from subsection 3.6.1 (Lemma 3.25).

Example 3.29. In order to illustrate the working of oMatch, we choose the expression

r = Q+(v)a ⋅ a∗ ⋅ bQ+(v) and use the following set of equations which illustrates every

step of the computation.

m0 = r m′
0 = follow(1, β0,m0) b0 = nullable(β0,m0)

mi+1 = read(wi,m′
i) m′

i+1 = follow(0, βi+1,mi+1) bi+1 = final(βi+1,mi+1)

85

We will choose w = aab and the valuations of v to be 1100. In Table 3.1, we show

the values of mi, m′
i and bi at each step. We abbreviate Q+(v) as Q, for the sake of

brevity.

To form m′
0, we need the valuation of β0[v] in order to check whether the query

Q+(v) is satisfied. Each m′
i+1 is obtained by shifting the marks to the next positions

in the expression. For example, notice that m′
1 has two marks. This is because the

expression a∗ is nullable, and the subsequent character could have been either an a

or a b. Each mi+1 is obtained by removing the marks on the predicates of m′
i which

do not satisfy the character wi. For example, we see that the mark on the predicate

b present in m′
1 is removed in m2. This is because the character w2 = a does not

satisfy the predicate b. The mark on b in m3 is lost when shifting to form m′
3. This

is because there are no subsequent characters left in the expression. The final result

is b3, which is obtained from the valuation β3 and the expression m3. Even though

there is a mark at the final character b in m3, b3 is still 0 since the query Q+(v) is not

satisfied by β3.

Theorem 3.30 (Resource Usage of oMatch). Suppose r ∈ OReg with ∣r∣ =m and

⟨w,β⟩ ∈ O(Σ, V) with ∣w∣ = n. Then, one can compute oMatch(r, ⟨w,β⟩) in O(m ⋅ n)

time in a streaming manner that requires an additional O(m) state space.

Proof. With the caching trick explained in subsection 3.6.2, we know that reading

off the cFinal and cNullable fields can be done in O(1) time. Similarly, applications

of the smart constructors mkEps, mkCharClass, etc also take O(1) time. Using this

information, we can show that the functions sync, cFollow and cRead in Figure 4 can be

computed in O(m) time, since they access each of their subexpressions exactly once.

The function applies cRead using each character in w, sync using each valuation in

β, and uses cFollow exactly ∣w∣ times. Thus, the functions of complexity O(m) are

86

iterated O(n) times, giving us a total time complexity of O(m ⋅ n).

Definition 3.27 shows how to compute oMatch in a streaming manner. At each

step, we only need to store the additional state represented via the argument m of

oMatch′. This requires O(m) space.

3.7 Efficient Layerwise Matching

In Section 3.5, we have shown that oracle regular expressions can be used to evaluate

regular expressions with lookahead if the truth values of the lookaheads are supplied as

oracle valuations. In Section 3.6, we have demonstrated how oracle regular expressions

can be matched on oracle strings. Now, we will show how to combine these two results

to match regular expressions with lookahead in an efficient manner.

3.7.1 Computing Tapes

In Lemma 3.16, we see that the appropriate oracle valuations for the oracle regular

expression abstract(r) is given in terms of oval(r,w), which is defined in terms of

tapes of the maximal lookarounds. Here, we show how these can be computed using

other existing concepts. One important detail here is that we need to scan the strings

in reverse order in order to compute oracle valuations for lookahead.

Definition 3.31 (Reversal of LReg and OReg expressions). Let r ∈ LReg be an

expression. The reversal of r, written rev(r) is defined as follows:

rev(r) = r if r ∈ {ε} ∪ P

rev(r1 ⋅ r2) = rev(r2) ⋅ rev(r1)

rev(r1 + r2) = rev(r1) + rev(r2)

rev(r∗) = rev(r)∗

rev((?> r)) = (?< rev(r))

rev((?< r)) = (?> rev(r))

rev((?/> r)) = (?/< rev(r))

rev((?/< r)) = (?/> rev(r))

87

If s ∈ OReg, then rev(s) is defined in a similar manner by replacing the lookaround

clauses with rev(Q+(v)) = Q+(v) and rev(Q-(v)) = Q-(v).

The reversals satisfy the following useful properties:

Lemma 3.32. Let r ∈ LReg, s ∈ OReg, r̂ = abstract(r), w ∈ Σ∗, β = oval(r,w) and

β′ ∈ (2V)∣w∣+1. Then, the following hold:

1. w, [i, j] ⊧ r ⇐⇒ rev(w), [∣w∣ − j, ∣w∣ − i] ⊧ rev(r)

2. ⟨w,β′⟩, [i, j] ⊧ s ⇐⇒ ⟨rev(w), rev(β′)⟩, [∣w∣ − j, ∣w∣ − i] ⊧ rev(s)

3. tape(◁, r,w) = rev(tape(▷, rev(r), rev(w)))

4. tape(rev(r), rev(w)) = tape(rev(r̂), ⟨rev(w), rev(β)⟩)

Part (1) and (2) of the lemma are characteristic properties of reversals of LReg and

OReg expressions respectively. Part (3) gives us a way to express tape(◁) in terms of

tape(▷). It is a direct consequence of (1). Part (4) follows from Part (1) and Lemma

3.16. This tells us that we can work with the reversal of abstract(r) instead of r itself,

and saves us from repeatedly reversing subexpressions, which is crucial for the linear

time complexity of the algorithm.

3.7.2 Matching Algorithm

In this section, we will describe the function eval which given r ∈ LReg and w ∈ Σ∗

computes abstract(r) and oval(r,w) together using oMatch from Definition 3.27.

The definition of the function eval shown in Figure 3.5, is defined in terms of the

auxiliary function evalAux. The function evalAux is given five arguments: w, w, r,

i and T . The first two arguments are the string and its reversal. We compute the

reversal in advance in the function eval so that we do not repeatedly reverse the string

88

// Computes ⟨abstract(r),oval(r,w)⟩

Definition eval (r ∶ LReg) (w ∶ list Σ) ∶ OReg × list B :=

let (r̂, , T) = evalAux(w, rev(w), r,0, []) in

let β = transpose(rev(T)) in

(r̂, β)

// Ensure w = rev(w)

// Appends the tapes for the maximal lookarounds of r to T

Fixpoint evalAux (w,w ∶ list Σ) (r ∶ LReg) (i ∶ N) (T ∶ list list B) ∶ OReg ×N × list list B :=

match r with

εÔ⇒ (ε,0, T)

σÔ⇒ (σ,0, T)

r1 ○ r2 where ○ ∈ {⋅,+} Ô⇒

let (s1, n1, T
′) = evalAux(w,w, r1, i, T) in

let (s2, n2, T
′′) = evalAux(w,w, r2, i + n1, T

′) in

(s1 ○ s2, n1 + n2, T
′′)

r∗ Ô⇒

let (s, n, T ′) = evalAux(w,w, r, i, T) in

(s∗, n, T ′)

(?< r) Ô⇒

let (s, β) = eval(r,w) in

let tape = oMatch(s, ⟨w,β⟩) in

let q = Q+(vi) in

(q,1, [tape] ++ T)

(?/< r) Ô⇒

let (s, β) = eval(r,w) in

let tape = rev(oMatch(s, ⟨w,β⟩)) in

let q = Q+(vi) in

(q,1, [tape] ++ T)

(?> r) Ô⇒

let (s, β) = eval(r,w) in

let tape = rev(oMatch(rev(s), ⟨w, rev(β)⟩)) in

let q = Q+(vi) in

(q,1, [tape] ++ T)

(?/> r) Ô⇒

let (s, β) = eval(r,w) in

let tape = oMatch(s, ⟨w,β⟩) in

let q = Q+(vi) in

(q,1, [tape] ++ T)

Figure 3.5 : Definition of eval, which computes ⟨abstract(r),oval(r,w)⟩

89

in recursive calls of evalAux. The third argument is the expression r that we want

to abstract. The fourth argument is the index i used for computing indices of the

queries. The fifth argument is a list of tapes, which have already been computed.

The output has three components, s, n and T . The first component s is intended

to be abstract(r). The second component n is arity(r). And the last component T

consists of tape(mi,w) for each maximal lookarounds mi in r. However, these tapes

appear in reverse order. This is because we add each new tape to the front of the list

T for the sake of efficiency. The formal connection is stated in the following lemma.

Lemma 3.33 (Behavior of evalAux and eval). Suppose w ∈ Σ∗, w = rev(w),

r ∈ LReg, i ∈ N , and T is a list of sequences each of length ∣w∣ + 1. Define (s, n, T ′) =

evalAux(w,w, r, i, T). Then, the following holds:

1. s = abstracti(r) (see Definition 3.12).

2. n = arity(r), the number of maximal lookarounds in r.

3. T ′ = T ′′ ++ T , where T ′′ is a list of ∣w∣ + 1 length sequences added to T .

There are n = arity(r) sequences in T ′′. Furthermore, T ′′ consists of the tape

of the maximal lookarounds stacked in reverse order, i.e., T ′′[n − j + 1] =

tape(maxLk(r)[j],w) for all 0 ≤ j < n.

As a result, if (r̂, β) = eval(r,w), then, r̂ = abstract(r) and β = oval(r,w).

The proof of this theorem makes use of the correctness of oMatch, (i.e., Theorem

3.28) along with Lemma 3.16 (about the connection of oval and abstract) and Lemma

3.32 (about the connection of tape(▷) and tape(◁)).

The results of eval(r,w) can be passed to oMatch to check if we have a match.

90

Definition 3.34 (Matching LReg). Let r ∈ LReg, w ∈ Σ∗, [i, j] a window in w

and let (r̂, β) = eval(r,w[i, j]). Define match(r,w, i, j) ∈ Bj−i+1 as match(r,w, i, j) =

oMatch(r̂, ⟨w,β⟩[i, j])

The following theorem follows from Lemma 3.33 (establishing the correctness of

eval), Theorem 3.28 (establishing the correctness of oMatch) and Lemma 3.16 (estab-

lishing the connection between abstract(r) and oval(r,w)).

Theorem 3.35 (Correctness of match). Let r ∈ LReg, w ∈ Σ∗ and [i, j] a window

in w. Then,

match(r,w, i, j)[k] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if w, [i, i + k] ⊧ r

0 if w, [i, i + k] /⊧ r

for all 0 ≤ k ≤ j − i.

The following theorem says that the function match can be computed in linear

time, and requires a linear amount of space.

Theorem 3.36 (Resource Usage of match). Suppose r ∈ LReg with ∣r∣ = m and

w ∈ Σ∗ with ∣w∣ = n. Then, one can compute match(r,w, i, j) in O(m ⋅ n) time using

O(m ⋅ n) space.

The main intuition behind the result is as follows: the algorithm effectively

decomposes the main expression r into subexpressions r1, r2, . . . rk such that ∣r∣ =

∣r1∣ + ∣r2∣ + . . . + ∣rk∣, where the decomposition is based on the nesting structure of

layers of lookarounds. For each subexpression ri, we run oMatch from Section 3.6,

whose resource consumptions are bounded by Theorem 3.30. The space usage arises

from the fact that we need to store tapes for each maximal lookaround. We have a

maximum of O(m) tapes, each of which stores n + 1 bits.

91

We note some important implementation details for the function eval. Consider

a regular expression r of size m, which has O(m) layers of lookaheads. In the com-

putation of eval, we would need to reverse the given string O(m) times. However,

we have avoided this by reversing the string in advance before passing it to evalAux.

Similarly, we may have to reverse the r itself O(m) times. However, after processing

each lookaround ri of r, we work instead with an abstracted version of r in which ri

has been replaced by a query. If ∣ri∣ = mi then, the abstracted version of r has size

m−mi, lowering the cost of subsequent reversals. These implementation details keep

the time complexity of eval linear, instead of quadratic.

3.7.3 Leftmost Longest Match Extraction

The previous subsection answers the classical membership problem: given r ∈ LReg

and w ∈ Σ∗, and a window [i, j] in w, decide if w, [i, j] ⊧ r. However, regular ex-

pressions with lookaround are sometimes used specifically so that one can specify

additional constraints about the context in which a substring appears without cap-

turing the context itself.

Example 3.37. One can use the regular expression [0−9]{3}−[0−9]{3}−[0−9]{4}

to find a telephone number. Usually, the first three digits of the phone number are

the area code. To extract just the area code from a telephone number, one can use

the regular expression [0−9]{3}(?>−[0−9]{3}−[0−9]{3}) that contains a lookahead

assertion.

Another example that shows the usefulness of lookbehind expressions is the ex-

traction of an email address domain. Suppose α = [0−9A−Za−z] is a predicate that

contains the alphanumeric characters. One can use the regular expression α∗@α∗.α∗

to match email addresses. To extract the domain of the email address, one can write

92

the expression (?<α∗@)α∗.α∗. (Interestingly, this regex is not allowed by the PCRE

standard, which disallows lookbehinds that could extend over a location of unbounded

length. The algorithm we present in this chapter does not have this limitation.)

A match for r on w is a window [i, j] such that w, [i, j] ⊧ r. Call a match [i, j]

maximal if it is not subsumed by any other match [i′, j′] where i′ ≤ i ≤ j ≤ j′ with

either i′ < i or j < j′. The leftmost longest match is a maximal match [i, j] where

i has the least possible value. For a given regular expression r and a word w, the

left-most maximal match is uniquely defined. The problem of extracting the leftmost-

longest match has been discussed before (see, e.g., the notes by Russ Cox [99]) and

is considered the POSIX standard. We discuss below how to extract the leftmost

longest match for regular expressions with lookarounds.

Definition 3.38. Let r ∈ LReg and w ∈ Σ∗. Define llMatch(r,w) as follows.

1. Compute (r̂, β) = (abstract(r),oval(r,w)) = eval(r,w).

2. Compute t1 = oMatch(Σ∗ ⋅ rev(r̂), ⟨rev(w), rev(β)⟩). Let i′ be the largest index

of t1 that is 1. If such i′ does not exist, let llMatch(r,w) be undefined.

3. Let i = ∣w∣ − i′. Compute t2 = oMatch(r̂, ⟨w,β⟩[i, ∣w∣]). Let d be the largest

index of t2 that is true. If there is no such d, let llMatch(r,w) be undefined.

Otherwise, define llMatch(r,w) = [i, i + d].

Theorem 3.39 (Correctness of llMatch). Let r ∈ LReg and w ∈ Σ∗. If llMatch(r,w)

is undefined, then for any window [i, j] in w, w, [i, j] /⊧ r. If, llMatch(r,w) = [i, j],

then w, [i, j] ⊧ r and [i, j] is the leftmost maximal match for r on w.

In Coq, we state this theorem as follows.

93

Theorem llmatch_correct (r : @LRegex A) (w : list A) :

(forall n d, llmatch r w = Some (n, d) (* when defined *)

-> match_regex r w n d (* match *)

/\ (forall n', n' < n (* leftmost *)

-> ~ (exists d', n' + d' <= length w /\ match_regex r w n' d'))

/\ (forall d', d' > d -> n + d' <= length w (* maximal *)

-> ~ match_regex r w n d'))

/\

(llmatch r w = None (* when undefined *)

-> forall n d, n <= n + d <= length w -> ~ match_regex r w n d).

3.8 Experiments

We conducted experiments to empirically assess the performance of our formally

verified algorithm. We compare it with industrially used tools PCRE [34], and

java.util.regex of the Java standard library [35] and the tool developed and veri-

fied in Lean presented in [1]. The Lean tool is based on Brzozowski derivatives [100],

and the two industrial tools are backtracking-based.

We have chosen three families of synthetic regexes (Table 3.2) which we have

called DNLA, NX and ND. The family DNLA consists of increasingly many disjuncts of

negative lookaheads, while NX and ND consist of increasingly nested lookaheads. For

the families NX and ND, we use input strings of the form an; and for the family DNLA, we

use input strings of the form en ⋅ abcd . These expressions and inputs are deliberately

chosen to be computationally challenging. We wish to force the algorithms to explore

the whole string (instead of exiting early), possibly multiple times.

Figure 3.6 shows the performance of the four tools on the three different families.

The rows from top to bottom represent the different tools: extracted (representing

94

Table 3.2 : Families of Regular Expressions in Experiments

Family Inst. 1 Inst. 2 Inst. 3 ⋯

DNLA (?!.*a.*).* ((?!.*a.*)|(?!.*b.*)).* (((?!.*a.*)|(?!.*b.*))|(?!.*c.*)).* ⋯

NX a(?=.*c) a(?=.*(?=.*c)) a(?=.*(?=.*(?=.*c))) ⋯

ND a(?=.*b) a((?=.*c)|.*a(?=.*b)) a((?=.*d)|(.*a((?=.*c)|.*a(?=.*b)))) ⋯

DNLA NX ND

extracted
lean

pcre
java

1e+05 2e+05 3e+05 100 200 300 100 200 300 400

1e+07 2e+07 3e+07 100 200 300 250 500 750 1000

100 200 300 25 50 75 100 250 500 750 1000

1e+05 2e+05 3e+05 1e+05 2e+05 3e+05 25000 50000 75000 100000
0e+00

1e+03

2e+03

1e+02

1e+03

1e+04

1e+05

1e+02

1e+04

1e+06

1e+01

1e+02

1e+03

1e+04

1e+05

0e+00

2e+03

4e+03

1e+01

1e+02

1e+03

1e+04

1e+05

1e+01

1e+02

1e+03

1e+04

1e+05

10

100

1000

10000

0e+00

2e+03

4e+03

0e+00

1e+05

2e+05

3e+05

4e+05

0.0e+00

2.5e+03

5.0e+03

7.5e+03

1.0e+04

0.0e+00

3.0e+04

6.0e+04

9.0e+04

1.2e+05

Length of Input String

T
im

e
in

 M
ill

is
ec

on
ds

Instance 1 2 3 4

Figure 3.6 : Performance of our extracted Haskell code (extracted), the Lean tool in

[1] (lean), PCRE (pcre), and Java (java) on the three different regex families DNLA,

NX, and ND

95

our Haskell code extracted from Coq), lean, pcre and java. The columns (left

to right) constitute the regex families: DNLA, NX, and ND. The colors represent the

different instances of the families, as shown in the legend. The x-axis is the length

of the input string, and the y-axis represents the running time in milliseconds. The

times reported are the averages of five trials; standard deviations are shown using

error bars. Note that the scales of both the x- and y-axes of the subfigures differ due

to the difference in capacities of the tools.

Inspecting the first row confirms our claim that our algorithm has a linear running

time. Generally, our extracted tool is able to handle longer inputs compared to the

other tools, even for higher instances. An exception is the DNLA family, over which

the pcre tool has the best performance. However, for the hardest instance and the

longest input in DNLA, the running time of our tool is only 5% of that of Java. For

the families NX and ND, we have plotted the y-axis in log-scale for all the tools other

than extracted. Both the industrial tools seem to be showing super-linear growth

for these families. We conjecture that the quick blowup in the running times in pcre

and java is caused by ‘catastrophic backtracking’; and in lean due to the explosion

in the size of the derivatives. An interesting observation is that the derivative-based

implementation of lean seems to outperform java and pcre for the family ND.

Data points with extremely short running times (i.e., ≤ 5ms) have been discarded

due to their unreliability. For pcre, we set the parameter match limit, which indi-

cates the allowed amount of backtracking, to the maximum possible value of 232 − 1,

and the tool aborts on workloads that exceed this threshold.

Experimental Setup. The experiments were conducted on a MacBook Air M2

(8 cores) running Ventura 13.6.1 with 8GB of RAM. We used PCRE version 10.42

and Apple clang version 14.0.3 for compilation. The Lean code and proof-scripts are

96

taken from [1] and built with Lean 4 (version 4.5.0-rc1). The runtime environment

used for Java is Java SE version 20.0.2. Our extracted Haskell code is compiled with

ghc version 9.4.8.

3.9 Related Work

An early example of using lookarounds in the context of parsing is [101], where

one-character lookarounds are used. In [102], deterministic transducers are obtained

through lookaheads. Positive and negative lookarounds are part of Parsing Expres-

sion Grammars [103]. Lookarounds are often used to specify the context from which

data should be extracted, as seen in CDuce [104] (which operates on XML documents

using regular patterns) and Kleenex [105] (which uses regular-expression-based gram-

mars to specify transductions). Recently, extensions of context-free grammars with

lookaheads have been studied in [106, 107].

At the time of writing, the widely used regex engines that do support lookarounds

are all based on backtracking, and can thus take exponential time to match in the

worst-case scenario (even in the absence of lookarounds). Some of them, including

PCRE and Python, do not allow unbounded lookbehinds. The linear time algorithm

for matching regular expressions with lookarounds we have presented in this chap-

ter was originally published in [28]. This chapter presents the implementation in

a purely functional approach, in particular the use of Marked Regular Expressions

instead of explicit NFAs. The approach of using marked regular expressions to sim-

ulate NFAs was discussed in [33, 108]. Formalized versions of Marked Expressions in

Isabelle/HOL are seen in [98] and [32]. A discussion on two variants for the marking

of regular expressions can be found in [98].

The matching of regexes with lookaround assertions is also considered in [109]

97

and [110]. Barriere and Pit-Claudel [109] represent the NFAs using Virtual Machine

instructions, a technique introduced by Rob Pike [111] and popularized by Russ Cox

[99]. Fujinami and Hasuo [110] use a memoization approach to filling in the oracle

valuations, and use a formalism based on ‘NFA with sub-automata’.

The backtracking-based greedy strategy of matching regexes prefers the first op-

tion r1 in a union r1 + r2 and prefers to lengthen the number of blocks matching r in

a Kleene iteration r∗. Compatibility with the greedy strategy is a consideration in

[110] and [112]. The greediest parse trees can be constructed, without backtracking,

in linear time as demonstrated in [113, 114]. In our case, we have shown how to

extract the leftmost-longest match, specified in the POSIX [115] standard.

Alternative semantics for lookaheads can be found in [97] and [116]. Miyazaki and

Minamide [97] associate lookahead expressions with a pair of strings of the form (s, t)

where s is the match and t is the lookahead. Berglund et al. [116] define the semantics

of lookaheads using alternating finite automata (AFA). A consequence of Berglund’s

approach is that the string could be matched in O(m ⋅ n) time by running the AFA

on the string in reverse. Note that neither of these approaches handles lookbehinds.

A streaming construction that scans the string from left to right (see, e.g., Mori-

hata [117]) would produce a DFA of doubly exponential size (see [97] for a lower

bound). This issue is avoided in our algorithm, since we may do right-to-left passes

(for lookaheads) in addition to left-to-right passes. An optimization proposed in [28]

shows that when the regex only has lookbehinds, the matching could be done in a

streaming manner by pipelining a network of NFA.

Limited forms of intersection and complementation can be simulated by expres-

sions with lookarounds. For example, the expression (?> r1) ⋅ (?> r2) ⋅Σ∗ would match

the strings that would match both r1 and r2, and the expression (?/> r1)Σ∗ only

98

matches strings that do not match r1. However, this encoding would not necessarily

work when the negation or intersection needs to be nested inside concatenation or

Kleene iteration. Expressions with negation are known to be non-elementarily suc-

cinct [118] while expressions with intersection are exponentially succinct [119]. Some

algorithmic improvements in matching such expressions have been found in [120].

Derivatives are popular for functional and verified implementations of regex match-

ing. Brzozowski derivatives [100] are the simplest approach to doing so, but a direct

implementation may be impractical since the size of the derivatives can grow very

large. Coquand and Siles [121] have formalized the notion of Brzozowski derivatives

using Coq. Verbatim++ [122] is a recent verified lexing tool which uses Brzowzowsksi

derivatives, which leverages memoization to prevent recomputation. A related ap-

proach is Antimorov’s [123] partial derivatives which correspond to states of an NFA.

Partial derivatives have been verified by [124] and [125].

Stanford et al. [126] have defined symbolic derivatives to deal with Boolean combi-

nations of derivatives. This work has been extended in [127, 128] and used by Moseley

et al. [128] to develop a matching library in the .NET framework. Zhuchko et al.

[1] have verified an algorithm for matching regular expressions with lookarounds in

Lean based on the idea of location-based (i.e., context-dependent) derivatives from

[128]. Urban and their coauthors have verified POSIX lexing based on derivatives in

Isabelle/HOL [129, 130, 131].

An extensive theory of regular languages involving regular expressions, DFAs and

NFAs were formalized in Coq by Doczkal et al. [132, 133]. A matrix-based NFA

formalization in Agda is seen in [134]. Kammar and Marek [135] have formalized a

parser based on typed regular expressions in Idris. A Coq formalization of finite state

automata is also discussed in [136], which they have verified in the context of Kleene

99

Algebras.

Kleene observed some of the algebraic properties in his seminal work on regular

expressions [19]. The algebraic theory was further developed by Conway [137] in his

extensive monograph. A particular problem of interest is that of finding a sound and

complete axiomatization of Kleene Algebras. Conway’s axiomatization is infinitary.

Salomaa [138] gave an axiomatization, but it relied on inference rules that were un-

sound for other models (i.e, other than that of regular languages). Redko [139] proved

the negative result that no finite equational axiomatization is possible. In 1994, Kozen

[31] was the first to give a finitary axiomatization of Kleene Algebras (which involves

equational implications in addition to equations). These are the axioms we have

considered in 3.4 of this chapter. The development of a complete axiomatization for

the theory of regular expressions with lookarounds is left for future work. Techniques

such as the extension of Kleene Algebra with additional equations [140] might be

useful in this regard.

100

Chapter 4

Tokenization using Thompson’s Algorithm

4.1 Introduction

Even if its source is available, an important aspect of trusting the security of software

binaries would still rely on the ability to trust the compiler used to compile it, as

noted by Ken Thompson in his Turing Award lecture [141]. Indeed, examples of

compiler-induced security vulnerabilities do exist in real code [142]. Compilers are

large pieces of software, and ensuring their safety and correctness is a non-trivial

task. Efforts such as CompCert [143, 144] aim to formally verify the correctness of

a C compiler using the proof assistant Coq. The CakeML project is a similar effort,

with the goal of developing an ML ecosystem with a verified compiler [145].

Lexing source code into a stream of tokens is one of the first steps the front-end

of a compiler performs. In order to have an end-to-end verified compiler, it is thus

important to verify lexing. Currently, the lexing phase in the CompCert compiler

is unverified. In the CakeML project, a handcrafted verified lexer is used that can

process a fixed list of tokens. It is thus desirable to have a more flexible lexer that

could be utilized in such systems.

Tokens in most programming languages are typically described using regular ex-

pressions. A lexer takes a list of regular expressions describing potential tokens, and

splits the source code into tokens based on their matches. Ties are broken using the

maximal munch rule (section 4.5), which favors the longest match and the earliest

101

expression. Note that using unsuitably crafted regex matching engines, such as those

which use backtracking, could lead to security vulnerabilities in certain cases [94].

Industry standard lexer generators such as Flex [146] compile the regular expres-

sions into deterministic finite state automata (DFA), which can be simulated very

efficiently.

Existing efforts towards verified lexing include Verbatim [147], Verbatim++ [122]

and Coqlex [148]. All of these are based on Brzozowski derivatives. Despite their

elegance, the difficulty with this approach is the potential exponential growth in the

size of derivatives, as we demonstrate in Section 4.6. The manipulation of regexes for

the computation of derivatives involves the allocation and deallocation of memory for

the syntax trees, which can also be an overhead.

Alexee, the verified lexing tool we describe in this chapter, is based on Thompson

NFAs [149]. Thompson NFAs are exponentially succinct compared to DFAs, but can

still be simulated efficiently (in linear time per character). Unlike a DFA simulation,

which has one active state, NFA simulations must maintain a set of active states.

Since our automata have ε-transitions, we need to use a graph reachability algorithm

to compute the transitions for a set of active states. Having ε-transitions in the

automaton is crucial to make sure that it has a linear number of edges, which is

important for the efficiency of the simulation.

Since our lexing algorithm is based on NFAs, we have to develop a system for

reasoning about graphs and reachability. This is a significant challenge in this for-

malization effort that does not arise in derivative-based approaches. A substantial

part of our effort is spent on characterizing the paths in the Thompson NFA (see

Section 4.3). We choose to represent the states of the automata using integer identi-

fiers to produce an efficient implementation. Another choice we have made towards

102

obtaining an efficient impelementation is to use mutable arrays (see Section 4.3.1): we

do this by axiomatizing arrays and then extracting them into a (slightly unfaithful)

OCaml representation which modifies the array in place. This is useful in implement-

ing depth-first search in an efficient manner (see Section 4.4.1).

Chapter Outline. This chapter has two main components, the verification of

Thompson’s algorithm and its use for maximal munch lexing. In Section 4.2, we

introduce the syntax and semantics of regular expressions and automata. Thompson’s

NFA Construction is discussed in Section 4.3. In Section 4.4, we discuss the simulation

of these NFA to match strings. This involves a depth-first search to compute the

ε-closures of a set of states which is discussed in Section 4.4.1. The main lexing

algorithm is discussed in 4.5. The emperical performance of our lexer is compared

against that of other tools in Section 4.6. Finally, we discuss related work in Section

4.7.

4.2 Regular Expressions and Automata

Let Σ be an alphabet, and Σ∗ the set of strings over Σ. Given a string w ∈ Σ∗, we

denote its length by ∣w∣. The empty string (i.e., the string of length 0) is denoted by

ε. For a string w ∈ Σ∗, we will call a formal pair [i, j] with 0 ≤ i ≤ j ≤ ∣w∣ a window

in w. We write w[i, j] for the substring wiwi+1 . . .wj−1 (note the omission of j) of w.

Definition 4.1 (Regular Expressions). Let P be a set of decidable predicates over Σ

(i.e., functions of type Σ → {1,0}). The set Reg of regular expressions is defined by

the following grammar:

r, r1, r2 ∶∶= ε ∣ σ ∈ P ∣ r1 ⋅ r2 ∣ r1 + r2 ∣ r∗

We associate with each regular expression r ∈ Reg a language JrK ⊆ Σ∗ in the

103

following usual way:

JεK = {ε}

JσK = {w ∈ Σ∗ ∣ σ(w0) = 1}

Jr1 ⋅ r2K = {w1 ⋅w2 ∣ w1 ∈ Jr1K,w2 ∈ Jr2K}

Jr1 + r2K = Jr1K ∪ Jr2K

Jr∗K = {w1⋯wn ∣ n ≥ 0,wi ∈ JrK}

In our Coq formalization, strings over a type A are represented using the type

list A. We use an inductive type to represent regular expressions, and the denotation

function J⋅K is defined as a Fixpoint producing a list A→ Prop.

Inductive Regex : Type :=

| Epsilon : Regex

| CharClass : (A -> bool) -> Regex

| Concat : Regex -> Regex -> Regex

| Union : Regex -> Regex -> Regex

| Star : Regex -> Regex.

Fixpoint regex_language (r : Regex) (w : list A) : Prop :=

match r with

| Epsilon => w = []

| CharClass f => exists a, w = [a] /\ f a = true

| Concat r1 r2 => exists w1 w2, w = w1 ++ w2

/\ regex_language r1 w1 /\ regex_language r2 w2

| Union r1 r2 => regex_language r1 w \/ regex_language r2 w

| Star r => exists ws, w = concat ws

/\ (forall w', In w' ws -> regex_language r w')

end.

104

Throughout our formalization, we use the type X → Prop to represent sets of

elements of type X. We define the membership relations ∈ and /∈, the set operations

∪,∩, and the set relations ⊆ and ≡ (set equality). The definition we use for set

equality (for ≡) is extensional, which is not the same as Coq’s standard equality (i.e,

=). However, by defining appropriate setoid morphisms, Coq’s generalized rewriting

mechanism [150] can be used to rewrite equations using our extensional equality.

4.2.1 Non-deterministic Finite Automata

As we will see in the Section 4.3, we can restrict ourselves to a class of NFA which

lends itself to a certain well-behaved representation.

Definition 4.2 (Transition systems, Automata). A transition system over an alpha-

bet Σ, using the predicates P of type Σ → {1,0}) is a function ∆ ∶ N → None ⊕

Char(P) ⊕ Jump(N) ⊕ Split(N × N) (where ⊕ denotes a disjoint union). If ∆(p) has

the value Char(σ), or Jump(q), or Split(q1, q2), we say that {p+ 1}, or {q}, or {q1, q2}

are the successors of p in ∆, respectively.

An automaton is a transition system ∆ together with a ‘final state’ F ∈ N, that

satisfies the following conditions: (1) for all q ≥ F , ∆(q) = None, and (2) for each

successor q of p in ∆, q ≤ F . The set of automata is denoted by A.

The function ∆ associates edges with each state of the transition system. If

∆(p) = None, there are no outgoing edges from the state p. If ∆(p) = Char(σ), then

p is associated with the edge p→σ p+ 1. If ∆(p) = Jump(q), then p is associated with

the edge p → q. If ∆(p) = Split(q1, q2), then p is associated with the edges p → q1

and p → q2. Note that only the edges of the form p →σ p + 1 emanating from p with

∆(p) = Char(σ) are guarded with a predicate. The edges emanating from Jump or

Split states are guarded.

105

A coherent sequence of these edges forms a path. The set of paths in the transition

system T starting from p and ending at q is written as PathsT (p, q). Given a path ρ,

the label π(ρ) ∈ P∗ can be obtained by concatenating the labels on its edges. This

determines a set of strings as follows: Jσ1 ⋅ σ2⋯σnK = {a1 ⋅ a2⋯an ∣ ⋀ni=1 σi(ai) = 1}.

Sometimes, we refer to sequences of predicates (such as σ1 ⋅ σ2⋯σn) as stringoids

(often abbreviated as stroid in the code listings).

We implicitly assume that 0 is the initial state of an automaton. Thus, a run of

an automaton A = (∆, F) is a path ρ which starts at 0 and ends at F . We denote

the set of runs of A by Runs(A) = PathsA(0, F). The language of the automaton A is

defined as

JAK = {w ∣ ρ ∈ Runs(A),w ∈ Jπ(ρ)K} .

In Coq, we represent transition systems as a function, and automata as a record

type consisting of a transition function and the final state.

Inductive Successor : Type :=

| SNone : Successor (* p -/-> *)

| SBlkd : (A -> bool) -> Successor (* p -a-> p + 1 *)

| SSplt : nat -> nat -> Successor (* p -> q1, q2 *)

| SJump : nat -> Successor (* p -> q *) .

Definition Graph := nat -> Successor.

Record automaton : Type := {

final : nat;

delta: @Graph A;

}.

106

Definition is_run_of (M : automaton) pp : Prop :=

path_from_to 0 (final M) pp /\ path_in_graph (delta M) pp.

Definition automaton_language (M : automaton) (w : list A) : Prop :=

exists pp, is_run_of M pp /\ stroidAccept (pathToStroid pp) w = true.

In our formalization, we view paths as either a list edge or a list nat (where

the nats represent states). There are additional predicates that check the validity of a

path. For example, the proposition path from to p q pp asserts that the path pp is

a path from state p to q, the proposition path in T pp asserts that the edges present

in the path pp respect the edges of the transition system T, and the proposition

consecutivity pp asserts that in the path pp the destination of each edge is the

source of the next edge. We also have predicates vpath from to and vpath in which

express similar assertions for paths represented as a list of vertices. A significant part

of our formalization involves several lemmas about these predicates which allow us to

reason about paths.

4.3 Thompson’s Construction

In this section, we describe Thompson’s inductive construction which produces an

automaton A(r) given a regular expression r ∈ Reg which recognizes the language

JrK.

Definition 4.3 (Thompson’s Construction). Given automata A1 = (∆1, F1) and A2 =

(∆2, F2), we define the operations of concatenation, union and Kleene iteration on

them as in Figure 4.1. The automata A(ε) and A(σ) are also defined in the Figure 4.1.

Given a regular expression r, A(r) is defined inductively by replacing occurrences of ε

107

A(ε) = (∆,0) where, ∆(p) = None

A(σ) = (∆,1) where, ∆(p) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

Char(σ) if p = 0

None otherwise

A1 +A2 = (∆, F1 + F2 + 2) where,

∆(p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

Split(1, F1 + 2) if p = 0

Jump(F1 + F2 + 2) if p = F1 + 1

∆1(p − 1) + 1 if 1 ≤ p ≤ F1

∆2(p − F1 − 2) + F1 + 2 if F1 + 2 ≤ p ≤ F1 + F2 + 1

None otherwise

A1 ⋅A2 = (∆, F1 + F2) where,

∆(p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∆1(p) if p ≤ F1

∆2(p − F1) + F1 if F1 ≤ p ≤ F1 + F2

None otherwise

A∗1 = (∆, F1 + 2) where,

∆(p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

Split(1, F1 + 2) if p = 0

Jump(0) if p = F1 + 1

∆1(p − 1) + 1 if 1 ≤ p ≤ F1

None otherwise

Figure 4.1 : Thompson’s Construction

108

and σ ∈ P with A(ε) and A(σ), and recursively apply the operations of concatenation,

union and Kleene iteration.

Example 4.4. Consider the regular expression r1 = ba + aa. The Thompson NFA

A(r1) is as shown below. In A(r1), the final state is F1 = 6. State 0 is a Split state,

states 1,2,4 and 5 are Char states and state 3 is a Jump state, as represented by the

color coding.

0 1 2 3 4 5 6
b a a a

We show the automaton A(r2) for the regex r2 = aab∗ below. This automaton

has 6 states. States 0, 1 and 3 are Char states, state 2 is a Split state and state 4 is a

Jump state.

0 1 2 3 4 5
a a b

We associate with each of the constructs above a lemma which states that con-

struction on the automata respect the operation on the regular expressions.

Lemma 4.5. Suppose r1, r2 and r are regular expressions. Then, the automata

A(r1), A(r2) and A(r) satisfy the following properties:

1. Jr1 + r2K = JA(r1) + A(r2)K

2. Jr1 ⋅ r2K = JA(r1) ⋅ A(r2)K

3. Jr∗K = JA(r)∗K

Additionally, JεK = JA(ε)K and for any σ ∈ P, JσK = JA(σ)K.

The proof of these lemmas involve reasoning about runs. In our Coq formal-

ization, we have a collection of lemmas labelled union run fwd, union run bwd,

109

concat run fwd, concat run bwd, etc. The lemmas with the suffix fwd provide a

way to take runs in A(r1) or A(r2) and produce a run in A(r1)+A(r2) or A(r1)⋅A(r2),

while the lemmas with the suffix bwd provide a way to take runs in A(r1) + A(r2)

or A(r1) ⋅ A(r2) and produce runs in A(r1) or A(r2). While proving these lemmas

informally using a visual representation of the Thompson construction is straightfor-

ward, the formalization in Coq requires long and tedious arguments involving paths

in our transition systems.

As an illustration, we show below the lemmas for the star operation. Taken

together, these two lemmas state that a run in the automaton A(r)∗ consists of a

sequence of runs in A(r).

Lemma star_automaton_run_fwd (M : @automaton A) : forall pps,

(forall pp, In pp pps -> is_run_of M pp)

-> let pps' :=

flat_map (fun pp => ESplt0 0 1 :: (path_up 1 pp)

++ [EJump (1 + final M) 0]) pps in

is_run_of (star_automaton M) (pps' ++ [ESplt1 0 (final (star_automaton M))]).

Lemma star_automaton_run_bwd (M : @automaton A) : forall pp,

is_run_of (star_automaton M) pp

-> exists pps, (forall ppA, In ppA pps -> is_run_of M (path_down 1 ppA))

/\ pp = (flat_map (fun ppA => ESplt0 0 1 :: ppA

++ [EJump (1 + final M) 0]) pps)

++ [ESplt1 0 (final (star_automaton M))].

The key theorem of this section can be stated as follows:

Theorem 4.6. Let r ∈ Reg be a regular expression. Then, the automaton A(r)

recognizes the language JrK.

110

The proof is a straightforward induction on the structure of the regular expression

r using Lemma 4.5. The theorem can be stated in a succinct manner in Coq as follows,

using ≡ to denote extensional equality of sets of strings represented as list A→ Prop.

Theorem regexAutomaton_language (r : @Regex A) :

automaton_language (regexAutomaton r) ≡ regex_language r.

The following lemma establishes a bound on the number of states in the automaton

A(r). This can be proven using a straightforward induction on the structure of the

regular expression r by noticing that during each step of the construction only at

most a constant number of additional states are added.

Lemma 4.7. Let r ∈ Reg be a regular expression. Let A(r) = (∆, F) be as defined in

Definition 4.3. Then, F is O(∣r∣), where ∣r∣ is the size of the syntax tree of the regular

expression r.

4.3.1 Using Arrays to Represent the Transition Function

In the above discussion, as well as throughout most of our Coq formalization, we

have represented the transition function ∆ as a function of type nat → Successor.

Extracting this directly to OCaml would result in the use of closures to represent

this function at runtime. We discuss the usage of arrays to represent the transition

function, so that the function calls can be evaluated in constrant time. An opaque type

BArray A is defined, together with operations baLength, baGet, baSet, and baNew for

obtaining the length of the array, accessing elements, setting elements, and creating

a new array, respectively. The relationship between them is defined using a list of

axioms, as shown in Figure 4.2. During extraction to OCaml, the type BArray is

implemented as an OCaml array.

111

baLength(baNew(n,x)) = n

baLength(baSet(a, i, x)) = baLength(a)

baGet(baNew(n,x), i) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

Some(x) if 0 ≤ i < n

None otherwise

baGet(baSet(a, i, x), j) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

Some(x) if i = j

baGet(a, j) otherwise

Figure 4.2 : Axioms for the BArray type

Extract Constant BArray "'a" => "'a array".

Extract Constant baNew => "fun n x -> Array.make n x".

Extract Constant baLength => "Array.length".

Extract Constant baGet =>

"fun a i -> if i < Array.length a then Some (Array.get a i) else None".

Extract Constant baSet => "fun a i x -> Array.set a i x; a".

Notice that the implementation of baSet is given using Array.set, which mutates

the array in place. This idea is not reflected in the axiomatization, but is necessary

for the efficient use of arrays. Whenever there is an array a2 defined as baSet(a1, i, x),

in order for the program to be safe, we must ensure that a1 is never used again.

Fortunately, this happens to be the case in all the places where we have made use of

arrays.

To store the transition function as an array, we define a function arrayify which

takes in a function f whose domain is a bounded set of natural numbers {0,1, . . . n−1},

and returns an array of length n such that the i-th element of the array is f(i). This

112

can be done in a straightforward manner by iterating over the various possible values

of i.

Definition iterSetArray (l : list nat) (init : BArray A) : BArray A :=

fold_left (fun a i => baSet a i (F i)) l init.

Definition arrayify : BArray A :=

iterSetArray (seq 0 n) (baNew n (F 0)).

Lemma arrayify_correct : forall i,

i < n -> baGet arrayify i = Some (F i).

We will revisit the use of arrays in Section 4.4.1, where we need to maintain

sets of visited states for the depth-first search algorithm. In a standard functional

setting, these would be represented via Sets or Maps, with an implementation based

on balanced binary search trees (such as Coq Standard Library’s Coq.MSets.MSetRBT

[151]). Standard operations (such as lookup and insertion) on these data structures

would incur an additional logarithmic factor.

4.4 Simulating NFAs using Depth-First Search

In order to determine whether an NFA accepts the prefix fed so far, we maintain the

set of states that are reachable on the prefix. Suppose A = (∆, F) is an automaton.

Then, this set is denoted by the following notation:

ReachA(w) = {q ∣ ∃ρ ∈ PathsA(0, q),w ∈ Jπ(ρ)K} .

Checking membership (i.e, whether w ∈ JAK) can be performed easily if the set

ReachA(w) is available. The key observation here is that for all w ∈ Σ∗, w ∈ JAK

113

if and only if F ∈ ReachA(w). Thus, the remainder of the section is devoted to

computing ReachA(w ⋅ a) given ReachA(w).

In order to do this, we define two more concepts. Given a set of states S of A, and

a character a ∈ Σ, we define adv(a,S) = {p + 1 ∣ p ∈ S,∆(p) = Char(σ), σ(a) = 1}. We

also define the set Closure(S) = {q ∣ p ∈ S,∃ρ ∈ Paths(p, q), π(ρ) = ε}. In other words,

Closure(S) is the set of states reachable from a state of S without encountering any

guarded edges.

In Coq, we represent ReachA(w) and Closure(S) using elements of type nat →

Prop. The function adv is expressed on a list of states as a filterMap.

Definition reachOf (M : automaton) (w : list A) : nat -> Prop :=

fun q => exists pp,

path_in_graph (delta M) pp

/\ path_from_to 0 q

/\ stroidAccept (pathToStroid pp) w = true.

Definition epsClosure (M : automaton) (S : nat -> Prop) : nat -> Prop :=

fun q => exists p pp, p ∈ S

/\ path_in_graph (delta M) pp

/\ path_from_to p q pp

/\ pathToStroid pp = [].

Definition advance (G : Graph) (S : list nat) (a : A) : list nat :=

filterMap (fun p => match G p with

| SBlkd pred => if pred a then Some (p + 1) else None

| _ => None

end) S.

The following lemma relates ReachA(w ⋅ a) with ReachA(w).

114

Lemma 4.8. Let A = (∆, F) be an automaton. Then, for any word w ∈ Σ∗ and

character a ∈ Σ, we have

ReachA(w ⋅ a) = Closure(adv(a,ReachA(w))).

Proof. The proof requires the following observation: Suppose that ρ ∈ PathsA(0, q)

with π(ρ) = s ⋅σ where s ∈ P∗ and σ ∈ P. Then, ρ could be split up into ρ = ρs ⋅ (p→σ

p + 1) ⋅ ρε, for some p where ρs ∈ PathsA(0, p) with π(ρs) = s, and ρε ∈ PathsA(p + 1, q)

with π(ρε) = ε. Note that the condition on ρε implies that q ∈ Closure({p + 1}).

Now suppose that q ∈ ReachA(w ⋅ a). Then there is a path ρ ∈ PathsA(0, q) with

π(ρ) = s ⋅ σ such that w ∈ JsK and σ(a) = 1. Using the fact above, we split up

ρ into ρs ∈ PathsA(0, p) where ρs ∈ PathsA(0, p) and ρε ∈ PathsA(p + 1, q). Thus,

p ∈ Reach(w), and since σ(a) = 1, p + 1 ∈ adv(a,Reach(w)). Finally, since π(ρε) = ε,

q ∈ Closure(adv(a,Reach(w))).

Conversly, suppose q ∈ Closure(adv(a,Reach(w))). By unwinding the definitions,

we see that there is some p and a path ρsPathsA(0, p), with w ∈ JsK, and an edge

p →σ p + 1 with σ(a) = 1, and a path ρε ∈ PathsA(p + 1, q) with π(ρε) = ε. Thus, the

path ρs ⋅ (p→σ p + 1) ⋅ ρε is a path in Paths(0, q) witnesses q ∈ ReachA(w ⋅ a).

Consider the subset ReachGA(w) = ReachA(w) ∩ {q ∣ ∆(q) = None ∨ ∆(q) =

Char(σ)}, consisting only of all those states of ReachA(w) which are not Jump or

Split states. It is easy to see that adv(a,ReachGA(w)) = adv(a,ReachA(w)), since

the Jump and Split states are ignored by the adv function. Defining ClosureG(S) =

Closure(S) ∩ {q ∣ ∆(q) = None ∨∆(q) = Char(σ)} in a similar manner, we have the

following corollary.

Corollary 4.9. Let A = (∆, F) be an automaton. Then, for any word w ∈ Σ∗ and

115

character a ∈ Σ, we have

ReachGA(w ⋅ a) = ClosureG(adv(a,ReachGA(w))).

Using the functions ReachG and ClosureG is slightly more efficient since the func-

tion adv has to iterate over a fewer number of states. Note that our observa-

tion that w ∈ JAK if and only if F ∈ ReachA(w) can additionally be viewed as

w ∈ JAK ⇐⇒ F ∈ ReachGA(w).

4.4.1 Depth-First Search

While the straightforward implementation of adv is efficient, formulating an imple-

mentation of Closure in an efficient manner is trickier. In this subsection, we discuss

our formalization of the depth-first search algorithm to tackle the computation of

Closure.

The key to the efficiency of DFS is that it avoids exploring paths that pass through

states that have already been visited. To encapsulate this idea, we define the predicate

R○
A(S,X) = {q ∣ p ∈ S, ρ ∈ PathsA(p, q), π(ρ) = ε, ρ ∩X = ∅}.

That is, R○
A(S,X) is the set of states reachable from any state in S via an unlabelled

path without passing through any state in X. We drop the subscript A when the

automaton is clear from the context. Additionally, when S = {p}, we write R○(p,X)

instead of R○({p},X) for convenience. Using this notation, we have that Closure(S) =

R○(S,∅).

The following simple properties about the relation R○ follow from its definition.

Lemma 4.10. Let A = (∆, F) be an automaton, and let p ∈ N and X ⊆ N. Then, the

following properties hold:

116

1. If p ∈X, then R○(p,X) = ∅.

2. If p /∈X, and ∆(p) = None, then R○(p,X) = {p}.

3. If p /∈X, and ∆(p) = Char(σ), then R○(p,X) = {p}.

When we have a Jump state p, we can avoid exploring paths whose ‘tails’ pass

through p. The following lemma makes this precise.

Lemma 4.11. Let A = (∆, F) be an automaton, and let p ∈ N and X ⊆ N such that

p /∈X and ∆(p) = Jump(q). Then, R○(p,X) = {p} ∪R○(q,X ∪ {p}).

Proof. Using the definition of R○, we can already see that {p} ∪ R○(q,X ∪ {p}) ⊆

R○(p,X). We focus on the other direction.

Suppose r ∈ R○(p,X). Then, there is a path ρ ∈ Paths(p, r) which does not pass

through any elements of X. If the path ρ contains only one edge, then it must be

q, and we would be done. If none of the later edges of ρ happen to be incident on

p, then we are also done. Otherwise, let ρ′ be the suffix of ρ starting from the last

occurrence of p. Then, ρ′ must have the form ρ′ = p → q → ⋯ → r, where p does not

occur in the path from q to r. Thus, r ∈ {p} ∪R○(q,X ∪ {p}).

The following lemma is crucial in justifying avoiding rexploration of parts of the

graph which have already been visited.

Lemma 4.12. Let S1, S2,X ⊆ N. Then, the following relation holds.

R○(S1 ∪ S2,X) = R○(S1,X) ∪R○(S2,X) = R○(S1,X) ∪R○(S2,X ∪R○(S1,X))

Proof. The first equality is trivial and follows from the definition of R○. As for

the second equality, notice first that since X ⊆ X ∪ R○(S1,X), it is clear that

117

R○(S2,X ∪ R○(S1,X)) ⊆ R○(S2,X). To prove the conclusion, it is enough to show

that R○(S2,X) ⊆ R○(S1,X) ∪R○(S2,X ∪R○(S1,X)).

Take r ∈ R○(S2,X), and let ρ ∈ Paths(p, r) be a path which does not pass through

any elements of X. If ρ does not pass through R○(S1,X), then we have r ∈ R○(S2,X∪

R○(S1,X)), and we are done. Let us examine the case when ρ does pass through

R○(S1,X). Let p be a vertex of ρ such that p ∈ R○(S1,X). Since p ∈ R○(S1,X), there

is a path ρ1 ∈ Paths(u, p) for some u ∈ S1 which does not pass through any elements

of X. Consider the suffix ρ2 of ρ starting from an occurrence of p. Then, ρ2 is an

element of Paths(p, r) which does not pass through any elements of X. Concatenating

the paths, we have ρ1 ⋅ ρ2 ∈ Paths(u, r) which does not pass through any elements of

X. Thus, r ∈ R○(S1,X).

This allows us to characterize the set R○(p,X) for Split states p.

Corollary 4.13. Let A = (∆, F) be an automaton, and let p ∈ N and X ⊆ N such that

p /∈ X and ∆(p) = Split(q1, q2). Then, R○(p,X) = {p} ∪R○(q1,X ∪ {p}) ∪R○(q2,X ∪

R○(q1,X ∪ {p})).

There is a difficulty that arises when formalizing Lemma 4.12 in Coq due to its

constructive logic. The argument showing that R○(S2,X) ⊆ R○(S1,X) ∪R○(S2,X ∪

R○(S1,X)) requires us to show whether the witness belongs in the left hand or the

right hand side of the union. This in turn requires us to determine whether the witness

path passes through R○(S1,X) or not. We assume this is a part of the hypothesis

for the lemma, and this hypothesis is supplied later when proving the correctness

of DFS. Indeed, determining whether a path passes through R○(S1,X) must involve

computing the R○ relation, which is done using DFS. The Coq formulation of this

lemma is shown below.

118

Function DFS (fuel ∶ N) (u ∶ N) (X ∶ SetN) ∶ SetN :=

if fuel = 0 ∨ u ∈X then

X

else

let X ′ = {u} ∪X in

let fuel′ = fuel − 1 in

match ∆(u) with

None→X ′

Char(σ) →X ′

Jump v1 →DFS fuel′ v1 X
′

Split v1 v2 →DFS fuel′ v2 (DFS fuel′ v1 X
′
)

end

Figure 4.3 : Depth First Search Algorithm using a fuel parameter

Lemma vreach_avoid_incr_set (G : @Graph A) (Avd Src1 Src2 : nat -> Prop)

(Vdec : forall v,

{v ∈ (vreach_without G Src1 Avd)} + {~ v ∈ (vreach_without G Src1 Avd)}) :

(vreach_without G Src1 Avd) ∪ (vreach_without G Src2 Avd)

≡ (vreach_without G Src1 Avd)

∪ (vreach_without G Src2 (Avd ∪ (vreach_without G Src1 Avd))).

The DFS algorithm is listed in Figure 4.3. To satisfy Coq’s termination checker,

an additional parameter fuel correspending to the number of recursive calls necessary

is supplied. This parameter is also useful in the proofs, as we will see in Lemma 4.14.

In our formalization, the set X of states is represented as BArray bool, an array of

F + 1 booleans, where the value true at index i indicates that the state i ∈ X. This

enables checking whether u ∈X holds in O(1) time.

The characteristic lemma about the correctness of DFS can be stated as follows.

119

Lemma 4.14. Let A = (∆, F) be an automaton, and let p ≤ F and X ⊆ {0,1, . . . F}.

Suppose that fuel ≥ (F + 1) − ∣X ∣. Then,

dfs(fuel, p,X) =X ∪R○(p,X).

Proof. The proof proceeds by induction on fuel. If fuel = 0, then the function dfs

simply returns X. But the condition of the hypothesis ensures that X = {0,1, . . . F}.

By Lemma 4.10, we have that R○(p,X) = ∅, and thus X = X ∪R○(p,X). The case

where fuel > 0 and p ∈ X, the reasoning is similar, since we still return X. Below,

we assume that fuel > 0 and p /∈X.

Consider the cases where p is a None or Char(σ) state. As noted in Lemma 4.10,

we have that R○(p,X) = {p} in this cases. Indeed, the function returns X ∪ {p} =

X ∪R○(p,X) in these cases.

Suppose ∆(p) = Jump(q). In this case, we define X ′ =X ∪{p}, and the algorithm

returns dfs(fuel−1, q,X ′). Indeed, ∣X ′∣ = ∣X ∣+1 and hence the hypotheses fuel−1 ≥

(F + 1) − ∣X ′∣ holds. Since fuel − 1 < fuel, we can invoke the inductive hypothesis.

By the inductive hypothesis, we have that dfs(fuel − 1, q,X ′) = X ′ ∪R○(q,X ′). By

Lemma 4.11, this is indeed what we want.

When ∆(p) = Split(q1, q2), we define X ′ = X ∪ {p}. By the induction hypothesis,

we have that dfs(fuel− 1, q1,X ′) =X ′ ∪R○(q1,X ′) and dfs(fuel− 1, q2,dfs(fuel−

1, q1,X ′)) = dfs(fuel − 1, q1,X ′) ∪R○(q2,dfs(fuel − 1, q1,X ′)). Using Lemma 4.12,

we notice that this is indeed X ∪R○(p,X).

We write dfs(p,X), dropping the fuel argument to mean dfs(F + 1, p,X), i.e,

giving the DFS algorithm the maximum needed fuel.

The time taken by the function dfs can be described as follows. This lemma can

be proven by induction on (F +1)− ∣X ∣, the number of states in the automaton which

120

have not been visited yet. An important aspect of the proof that allows us to keep

the linear complexity in the number of states is that each of them has at most two

outgoing edges. If we allowed an unstructured automaton with an arbitrary number

of outgoing transitions, the complexity would be O(F + ∣∆∣), where ∣∆∣, the number

of transitions, could be as large as O(F 2).

Lemma 4.15. Let A = (∆, F) be an automaton, and let p ≤ F and X ⊆ {0,1, . . . F}.

Then, the time taken to compute function dfs(p,X) is O(F − ∣X ∣).

While the dfs function above takes one vertex as input, it could be called re-

peatedly to compute R○(S,∅) for a finite set of vertices S. Given a list of ver-

tices p1, p2 . . . pn, pn+1, we define the set R(. . .) as follows. Define R() = ∅, and

R(p) = R○(p,∅). For n ≥ 1, define

R(p1, p2, . . . pn, pn+1) = R(p1, . . . pn) ∪R○(pn+1,R(p1, . . . pn)).

Lemma 4.16. Let p1, p2, . . . pn be a list of states. Then,

R(p1, p2, . . . pn) = R○({p1, p2, . . . pn},∅).

Proof. The proof is by induction on n, the number of elements in the list. When

n = 0 or n = 1, the result is clear by unfolding the definition of R.

By way of induction, let us assume that R(p1, p2, . . . pn) = R○({p1, p2, . . . pn},∅).

Instantiating Lemma 4.12 with S1 = {p1, p2, . . . pn} and S2 = {pn+1}, and X = ∅, we

find that

R○({p1, p2, . . . pn, pn+1},∅) = R○({p1, p2, . . . pn},∅) ∪R○(pn+1,R○({p1, p2, . . . pn},∅)).

We may use the inductive hypothesis to replace R○({p1, . . . pn},∅) with R(p1, . . . pn),

and get

R○({p1, p2, . . . pn, pn+1},∅) = R(p1, p2, . . . pn) ∪R○(pn+1,R(p1, p2, . . . pn)).

121

We observe that the right hand side is exactly R(p1, p2, . . . pn, pn+1), and this completes

the proof.

This gives us a way to repeatedly apply dfs to compute R○(S,∅) for a finite set of

states S. The proof of the following theorem can be given by first using Lemma 4.14

to notice that the chained dfs calls are equivalent to the R function, and then using

Lemma 4.16.

Theorem 4.17. Let S = {p1, p2, . . . pn} be a finite set of states. Then,

Closure(S) = R○(S,∅) = dfs(pn, . . .dfs(p2,dfs(p1,∅)) . . .).

This computation can be easily expressed as a fold as shown below.

Definition dfsMany (lsrc : list nat) : BSet :=

fold_left (fun SS u => dfs (1 + (final M))) u SS) lsrc (emptyBSet (S (final M))).

The time required to compute Closure(S) using dfsMany is linear in F . This is

because with each call of dfs, the number of ‘unvisited states’ in X decreases, and

this decreases the total amount of work done across all calls of dfs.

Theorem 4.18. Let S = {p1, p2, . . . pn} be a finite set of states. Then, the time taken

to compute Closure(S) by repeated calls of dfs (as shown in Theorem 4.17) is O(F).

As discussed earlier in this section, it is more efficient to work with the set ReachG

and ClosureG instead of Reach and Closure, respectively. Thus, we modify the dfs

function so that it produces the list ClosureG directly while computing Closure. In the

modified function, there is an additional argument supplied to dfs which stores only

the Char and None states in a list. In the skeleton code provided below, the function

dfsMany computes Closure, while the function dfsManyG computes ClosureG.

122

Fixpoint dfsInner (fuel : nat) (u : nat)

(X : BSet) (qs : list nat) : (BSet * list nat) :=

...

Definition dfsManyInner (lsrc : list nat) : BSet * list nat :=

fold_left (fun '(SS, gs) u => dfsInner

(1 + final M) u SS gs) lsrc (emptyBSet (1 + final M), []).

Definition dfsMany (lsrc : list nat) : BSet :=

fst (dfsManyInner lsrc).

Definition dfsManyG (lsrc : list nat) : list nat :=

snd (dfsManyInner lsrc).

4.5 Maximal Munch Tokenization

The process of tokenization or lexing is to partition a string into a stream of to-

kens. Typically, a list of regular expressions is used to specify what the tokens could

be. When multiple regular expressions could match, the following rule is used to

disambiguate.

Definition 4.19 (Maximal Munch Tokenization). Let R be a list of n regular ex-

pressions r0, . . . , rn−1 ∈ Reg, and w ∈ Σ∗ be a string. We say that maxMunch(R,w) =

Some(i, j) if w[0, i] ∈ JrjK and additionally the following conditions hold:

1. No prefix longer than w[0, i] is recognized, i.e, for any i′ > i, w[0, i′] /∈ JrkK for

any 0 ≤ k ≤ n.

2. The expression rj is the first expression that recognizes w[0, i], i.e., for any

0 ≤ k < j, w[0, i] /∈ JrkK.

123

If no such (i, j) exist, then maxMunch(R,w) = None. In this case, we say that w

cannot be tokenized by R, or that the maximal munch of w with respect to R is not

defined.

A tokenization of w with respect to a list of regular expressions R is an or-

dered list of pairs (j1, t1), . . . , (jk, tk) such that w = t1 ⋅ t2⋯tk and for all 1 ≤ α ≤ k,

maxMunch(R, tαtα+1⋯tk) = Some(∣tα∣, jα). In other words, the tokenization is ob-

tained by collecting every maximal prefix. Note that the tokenization may not nec-

essarily exist.

The lexer takes a list of regular expressions R, each describing a potential to-

ken, and a string w, and splits w into w[0, i] ⋅w[i, ∣w∣] such that maxMunch(R,w) =

Some(i, j) for some j. Executing the lexer repeatedly on the suffix w[i, ∣w∣] in this

manner gives us a stream of tokens which can be used for further processing.

Example 4.20. In the case of a string representing a JSON object [152], the set

of tokens include strings, numbers, three literal names (true, false and null), six

structural characters ([,], {, }, , and :), and whitespace (consisting of spaces, tabs,

newlines and carriage returns). Each of these tokens, including strings and numbers,

could be expressed as a regular expression. For example, the string [{"abc":-1.2}]

would be tokenized as the tokens [, {, "abc", :, -1.2, } and]. These tokens have the

types begin-array, begin-object, string, name-separator, number, end-object

and end-array respectively. Knowing the types of these tokens would allow the

parser consuming them to construct the appropriate tree represented by the JSON

serialization.

Example 4.21. Let R = [r1, r2] = [ba+aa, aab∗]. The automata A(r1) and A(r2) are

shown in Example 4.4. Let w = aabaa be the string being tokenized. This string would

124

be tokenized as (2, aab), (1, aa). Note that the first token is aabaa (by matching r2)

rather than aabaa (by matching r1) since the former option is longer. For the second

token, aabaa is matched by both r1 and r2. We classify this token as type 1 instead

of 2 since the maximal-munch rule prioritizes earlier options.

If the input string was w′ = aaba instead, the maximal munch tokenization would

not exist. Note that (1, aa), (2, ba) is not a maximal-munch tokenization, since se-

lecting aabaa would violate the maximal munch principle.

In the remainder of this section, we demonstrate how the maxMunch(R,w) func-

tion can be computed by simulating the Thompson NFA constructed in the previous

sections. The main idea is the following: Given R = ⟨r1, r2, . . . , rn⟩, we construct

the corresponding automata A = ⟨m1,m2, . . .mn⟩; we maintain a list of sets of active

states S = ⟨S1, S2,⋯Sn⟩ and update each Si when we read a character from the input

string. This retains enough information to determine if any of the expressions ri have

recognized the consumed prefix.

Definition 4.22 (Lexer Configuration). A lexer configuration C is an ordered tuple

(ℓ, τ, β) where ℓ ∈ N, β ∈ Option(N × N) and τ ∈ list (N ×A × list N). The value ℓ

indicates the length of the string fed in so far, β indicates the maximal munch so far,

and τ contains the list of active states for each automaton. Each element of τ is of

the form (i,mi, Si) where mi is the automaton corresponding to the expression ri of

R, and Si is the set of ‘active states’ ReachGmi
(w).

In Figure 4.4, we define certain invariants which express propositions relating the

configuration to the input string w. Clearly, if χ(C,w) holds, then maxMunch(R,w) =

β. Thus, we define initCfg such that χ(initCfg, ε) holds, and stepCfg such that if

χ(C,w) holds, then χ(stepCfg(C,a),w ⋅ a) holds.

125

χlen(ℓ,w) ≜ ℓ = ∣w∣

χβ(β,w) ≜ β = maxMunch(R,w)

χidx(τ) ≜ ∀(i,mi, Si) ∈ τ,mi = A(ri)

χsorted(τ) ≜ ∀i < j, if τ[i] = (α,mα, Sα) and τ[j] = (β,mβ, Sβ), then α < β

χReach(τ,w) ≜ ∀(i,mi, Si) ∈ τ, then Si = ReachGmi(w)

χmissing(τ,w) ≜ ∀i, if (i,mi,) /∈ τ, then ReachGmi(w) = ∅

χthreads(τ,w) ≜ χidx(τ) ∧ χsorted(τ) ∧ χReach(τ,w) ∧ χmissing(τ,w)

χ(C,w) ≜ χlen(ℓ,w) ∧ χβ(β,w) ∧ χthreads(τ,w), where C = (ℓ, β, τ)

Figure 4.4 : Invariants for the Lexer Configuration

We define the function firstAccept on τ to be the first i such that (i,mi, Si) ∈ τ

and Fmi
∈ Si. The function bmUpdate is used to calculate the maximal munch for the

updated string w ⋅a. We show below their Coq definitions. The function find is taken

from the Coq standard library, which produces the first element of a list satisfying a

predicate by scanning it in a linear manner.

Definition firstAccept

(threads : list (nat * automaton * list nat)) : option nat :=

match find (fun '(i, mi, si) => existsb (fun q => q =? final mi) si) thrds with

| None => None

| Some (i, _, _) => Some i

end.

Definition bestMatchUpdate (oldBM : option (nat * nat))

(strPtr : nat) (new : option nat) : option (nat * nat) :=

match new with

126

| None => oldBM

| Some j => Some (strPtr, j)

end.

Lemma 4.23. Suppose τ ′ is such that χthreads(τ ′,w ⋅ a), and β is such that χβ(β,w)

holds. Define

β′ = bmUpdate(β, ∣w ⋅ a∣,firstAccept(τ ′)).

Then the following hold:

1. If firstAccept(τ ′) = None, then for all rj, w ⋅ a /∈ JrjK.

2. If firstAccept(τ ′) = Some(j), then j is the least value such that w ⋅ a ∈ JrjK.

3. χβ(β′,w ⋅ a) holds.

Proof. For any automaton A = (∆, F), we know that w ∈ JAK if and only if F ∈

ReachA(w). The invariant χReach(τ ′,w ⋅ a) implies that for each (j,mj, Sj) ∈ τ ′, Sj =

ReachGmj
(w ⋅ a). Thus, if the function firstAccept did not find any mj in τ ′ such that

Fmj
∈ ReachGmj

(w ⋅ a), then w ⋅ a /∈ JmjK for any mj among those which are present

in τ ′. Additionally, the invariant χmissing(τ ′,w ⋅ a) implies that for each j such that

(j,mj,) do not appear in τ ′, ReachGmj
(w ⋅ a) = ∅. This means that w ⋅ a /∈ JmjK for

any mj which are not present in τ ′. Thus, the first condition holds.

The proof of the second condition is similar, and makes use of the invariants

χReach and χmissing. Additionally, the invariant χsorted is needed to establish that the

first automaton found while scanning the list τ ′ indeed has the least possible value of

j.

The third part is a direct consequence of the definition of the maximal munch. If

w ⋅ a /∈ JrjK for any j, then maxMunch(R,w ⋅ a) = maxMunch(R,w). Otherwise, if j is

the least value such that w ⋅ a ∈ JrjK, then maxMunch(R,w ⋅ a) = Some(∣w ⋅ a∣, j).

127

Next, we define the function stepThreads which updates the list of active states

in τ given a character a. While doing so, it drops the tuples (i,mi, Si) for which

Si = ∅, since these cannot accept any further extensions of the current input string.

Given the character a ∈ Σ, the function stepCfg produces the updated configuration

corresponding to the extended string w ⋅ a.

Definition stepThreads (a : A) (oldThreads : list (nat * @automaton A * list nat))

: list (nat * @automaton A * list nat) :=

filterMap (fun '(i, m, states) =>

let new_states := dfsMany m (advance (delta m) states a) in

if nilb new_states then None else Some (i, m, new_states)

) oldThreads .

Lemma 4.24. The function stepThreads preserves χthreads. Suppose χthreads(τ,w)

holds and τ ′ = stepThreads(a, τ). Then χthreads(τ ′,w ⋅ a) holds.

Proof. We show why each of χidx, χsorted, χReach and χmissing hold for τ ′.

Since the fields i,mi in each entry of the list τ do not change, χidx continues to

hold. Similarly, since the list τ is sorted, and the function filterMap does not change

the order of the elements, χsorted continues to hold for τ ′.

For each (i,mi, Si) ∈ τ , the we have Si = ReachGmi
(w) by the invariant χReach.

Using Lemma 4.8, we know that ReachGmi
(w ⋅ a) = Closure(adv(a,Si)). This shows

that χReach holds for τ ′.

The function filterMap drops the entries (i,mi, Si) for which Si = ∅. This is con-

sistent with the invariant χmissing. Additionally, consider the cases where (i,mi, Si) was

already missing in τ . Then, ReachGmi
(w) = ∅, and one can check that ReachGmi

(w ⋅

a) = ∅ as well. These entries are excluded from τ ′ as well, and thus χmissing holds for

τ ′.

128

In Fig 4.5, we describe the initCfg configuration and the stepCfg function, using

the building blocks defined above. The following lemmas characterizing the initCfg

configuration and the stepCfg function can be proven using Lemma 4.24.

Lemma 4.25. The following holds:

1. χ(initCfg, ε) holds.

2. If χ(C,w) holds, then χ(stepCfg(C,a),w ⋅ a) holds.

The function foldCfg is used to compute the final configuration given a string w.

The following theorem states that the maxMunch function in Figure 4.5 computes the

maximal munch correctly.

Theorem 4.26. Let w ∈ Σ∗ be a string and R = ⟨r1, r2, . . . , rn⟩ be a list of reg-

ular expressions. Define the configuration (ℓ, τ, β) = foldCfg(w, initCfg). Then β =

maxMunch(R,w).

Proof. We will prove by induction on w that the invariant χ holds for the config-

uration (∣w∣, τ, β). This is sufficient to prove the conclusion, since χβ implies that

β = maxMunch(R,w).

If w = ε, then this is immediate from Lemma 4.25. If w = w′ ⋅ a, and the invariant

χ(C,w) held then, so does χ(stepCfg(C,a),w ⋅a) by Lemma 4.25. Thus, the induction

step holds when τ is nonempty.

Let us consider the case where τ is empty and our function foldCfg ‘returns early’.

Assume that χ holds for (∣w∣, [], β). We wish to show that χ still holds for (∣w⋅a∣, [], β).

The key observation is that using χmissing, we know that for all i, ReachGmi
(w) = ∅.

Thus, ReachGmi
(w ⋅ a) = ∅ as well. This implies that neither the best match, nor the

list of threads need to be updated.

129

// Lexer Configuration - (ℓ, τ, β)

type Cfg = N × list (N ×A × list N) ×Option(N ×N)

// Produces an initial lexer configuration

Function initCfg (R ∶ list Reg) ∶ Cfg :=

// Use Thompson’s Construction for each ri in R

let M = [(∆i, Fi) ∣ 0 ≤ i < ∣R∣, (∆i, Fi) = A(R[i])] in

// Compute ReachGmi({ε}) for each mi

let τ = [(i,mi,ClosureGmi({0})) ∣ 0 ≤ i < ∣R∣,mi =M[i]] in

let β = match firstAccept(τ) with

None→ None

Some(j) → Some(0, j)
end in

(0, τ, β)

// Steps the configuration by consuming one character

Function stepCfg (a ∶ Σ) (C ∶ Cfg) ∶ Cfg :=

// For each (i,mi, Si) ∈ τ, define S′i = ClosureGmi(adv(a,Si))

// τ ′ contains the tuples (i,mi, S
′

i)

// except those for which S′i = ∅

let τ ′ = stepThreads a (τ C) in

let ℓ′ = 1 + (ℓ C) in

// if a new match has been found, update β

let β′ = bmUpdate (β C) ℓ′ (firstAccept τ ′) in

(ℓ′, τ ′, β′)

// Steps the configuration character-by-character

Function foldCfg (w ∶ Σ∗) (C ∶ Cfg) ∶ Cfg :=

// If w = ε, we are done

// If τ is empty, no active states in any automata remain

if w = ε ∨ τ C = [] then

C

else

let a ⋅w′ = w in foldCfg w′ (stepCfg a C)

// Computes the maximal munch

Function maxMunch (R ∶ list Reg) (w ∶ Σ∗) ∶ Option(N ×N) :=
let C = initCfg R in

β (foldCfg w C)

Figure 4.5 : Algorithm for Computing the first token using the maximal-munch prin-

ciple

130

Table 4.1 : Evolution of the lexer configuration for ⟨ba + aa, aab∗⟩ on aabaa

Consumed Prefix ε a aa aab aaba aabaa

ℓ 0 1 2 3 4 5

τ (A1, [1,4])

(A2, [0])

(A1, [5])

(A2, [1])

(A1, [6])

(A2, [3,5])

(A2, [3,5]) ∅ ∅

β None None Some(2,1) Some(3,2) Some(3,2) Some(3,2)

Example 4.27. Let R = ⟨r1, r2⟩ = ⟨ba+aa, aab∗⟩. The automata A(r1) and A(r2) are

shown in Example 4.4. We show in Table 4.1 the first token of w = aabaa is obtained

by our algorithm.

When the consumed prefix was ε or just a, we had β = None, since neither of the

regexes matched. When the prefix was aab, both r1 and r2 were matched, which could

be known by checking that the final states 6 and 5 of the automata A(r1) and A(r2)

respectively were in the set of ‘active states’. This is when the best match β found so

far is also updated. Upon consuming the next b, there are no remaining active states

in the first automaton, so it is dropped from τ . The value of β is updated as well to

reflect the new match. When the next letter is consumed, there are no active tokens

left in either automata. Thus, the foldCfg function would not process the rest of the

string and return early.

The following theorem characterizes the time complexity of the foldCfg function,

and thus the time it requires to compute maxMunch(R,w).

Theorem 4.28. Let R = ⟨r1, r2, . . . , rn⟩ be a list of regular expressions, and let w ∈ Σ∗

be a string. Let s = ∣r1∣ +⋯+ ∣rn∣ be the sum of the sizes of the regular expressions in

R. Then, the time taken to compute maxMunch(R,w) using foldCfg is O(s ⋅ ∣w∣).

131

Proof. Using Lemma 4.7, each of the automata A(ri) have size O(∣ri∣). Each step of

the function foldCfg consists of calling stepThreads, which involves computing ClosureG

for each automaton. Theorem 4.18 shows that the time taken to compute ClosureG is

O(∣ri∣) for each i. Additional time is necessary to check each entry in τ and discard

the empty ones. This takes time O(n), where n is the number of expressions in R,

and is also O(s). Thus, the time taken to compute stepThreads is O(s). Iterating

this over ∣w∣ characters takes O(s ⋅ ∣w∣) time.

This procedure can be used in a straightforward manner to compute the maximal

munch tokenization of a given string.

Corollary 4.29. Let R = ⟨r1, r2, . . . , rn⟩ be a list of regular expressions, and let w ∈ Σ∗

be a string. Suppose s is the sum of the sizes of the regular expressions in R. Then,

the maximal-munch tokenization, as defined in Definition 4.19, can be computed by

repeatedly using foldCfg in O(s ⋅ ∣w∣2) time.

Proof. The procedure consists of calling foldCfg to determine each token. If w = ε, we

are done. If β = None or if β = Some(0, j), the string cannot be tokenized. Otherwise,

if β = Some(i, j), then we add the token (j,w[0, i]) to the stream of tokens and recurse

on the remaining string w[i + 1, j].

Theorem 4.28 shows that the time taken to compute maxMunch(R,w) is O(s ⋅ ∣x∣),

when the string supplied is x. Since with each call to foldCfg, we shave off one

character from w, there are at most ∣w∣ calls to foldCfg. Each of these calls use a string

of size ≤ ∣w∣. Thus, the time needed to compute the tokenization is O(s ⋅ ∣w∣2).

Example 4.30. Suppose we have R = ⟨ab, (ab)∗#⟩, and the input is (ab)n for some

n ∈ N. Each call of foldCfg would scan the entire string each time to see if (ab)∗#

can be matched and take time proportional to the size of the string. Since no match

132

of (ab)∗# would be found, each token would be ab (of size 2) and the tokenization

algorithm would have to scan the remainder of the string again. Thus, this algorithm

would elicit the worst-case running time of O(n2).

4.5.1 Pre-computing results of Depth-First Search

The function stepThreads requires computing ReachG for each set of active states,

which is usually done using the dfsMany function explained in Section 4.4.1. In

practice, it is very often the case that the set of active states is very often either a

singleton or a set containing two elements. Thus, for these two cases, we precompute

the results of DFS and store them in arrays, by utilizing a technique similar to Section

4.3.1. With this modification, the each element of the list τ in the lexer configuration

has the following form: (j,mj, a1j , a
2
j , Sj). The entries j, mj and Sj are as before,

while the arrays a1j and a
2
j satisfy the following properties: a1j[p] = ClosureG({p}) and

a2j[p][q] = ClosureG({p, q}). Thus, while computing ClosureG, if we encounter a set of

size ≤ 2, we can look up the result in the arrays a1j and a
2
j directly.

4.6 Experimental Results

We conducted experiments to empirically evaluate the performance of our verified

lexer, in comparison with other verified and non-verified tools. In particular, for

verified tools, we consider Coqlex [148], Verbatim [122]. For non-verified lexer gener-

ators, we consider Flex [146], and Ocamllex [153]. Further, both Coqlex and Verbatim

are based on Brzozowski derivatives [100]. Flex and OCamllex are based on DFAs,

and Verbatim uses an optimization that constructs a partially complete DFA before

beginning lexing. Our tool is the only one which is based on Thompson NFAs.

For realistic benchmarks, we consider the JSON ruleset, which distinguishes be-

133

Smaller Inputs Larger Inputs

2e
+0

4

3e
+0

4

4e
+0

4

5e
+0

4

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

2.
0e

+0
8

2.
5e

+0
8

0

20

40

60

1e−03

1e−02

1e−01

1e+00

Input Length (bytes)

T
im

e
(s

)
Tool Alexee Coqlex Flex OCamllex Verbatim

Figure 4.6 : Performance of Alexee, Coqlex, Verbatim, Flex, and Ocamllex on JSON

tokenization

tween the different tokens in a JSON file (see Example 4.20). Following the evaluation

in [148] and [122], the tools are evaluated on the gross domestic product (GDP) data

retrieved from World Bank Open Data [154]. Note that in order to demonstrate the

growth of running time with respect to input text length, we manipulated the JSON

file to create inputs of various lengths. To produce smaller inputs, we have taken a

prefix of the input data. For larger inputs, we have copied the input data multiple

times to produce larger strings.

Figure 4.6 shows the performance of the five tools on the GDP JSON data. Each

data point shown in the plots is the average of three trials. The standard deviation of

134

the three trials is almost negligible across the board and is thus omitted. We noticed

that Verbatim frequently ran into segmentation faults when given large inputs that

the other tools were able to reasonably handle. Thus, the subfigure on the left, which

is plotted using a log-scale transformation on the y-axis, involves smaller inputs on

which Verbatim was able to process the entire input. On the other hand, to better

distinguish the performance of the other four tools, the subfigure on the right involves

larger inputs, and the difference in performance can be observed clearly.

We observe that all five tools exhibit linear growth of running time with respect

to input length. However, Verbatim is much slower than the other four. Despite

being slower than the non-verified tools, which is to be expected, with a throughput

of around 10MB/sec, Alexee is roughly twice as fast as Coqlex. The throughputs of

Flex, OCamllex, Coqlex and Verbatim are approximately 103MB/sec, 44MB/sec, 4

MBps 4MB/sec and 9KB/sec respectively.

The two microbenchmarks (shown in Fig 4.7) are based on synthetic regexes which

elicit the worst-case behavior in Coqlex and Verbatim. The first microbenchmark

(Fig 4.7a) uses the ruleset [(a∗b?)∗, a, b] on the input aNb, with varying values of N .

Noting that the y-axis is in log scale, we observe that Coqlex takes an exponential

amount of time (in terms of N) to tokenize this string. This behavior occurs because

taking a-derivatives of the regex (a∗b?)∗ causes it to grow exponentially. Indeed, we

have ∂a[(a∗b?)∗] = (a∗b?) ⋅ (a∗b?)∗, and ∂a[(a∗b?) ⋅ (a∗b?)∗] = (a∗b?) ⋅ (a∗b?)∗ +

(a∗b?) ⋅ (a∗b?)∗. Thus, the derivative of the regex using the string aN+1 would have

2N copies of (a∗b?) ⋅ (a∗b?)∗. This behavior does not show up in Verbatim since

it prepares a (partially complete) DFA. Similarly, our tool does not suffer from this

worst-case behavior since it is based on NFA simulation.

The second microbenchmark (shown in Fig 4.7b) considers a ruleset with a single

135

1e−04

1e−01

1e+02

20 22 24 26 28
Input Length (bytes)

T
im

e
(s

)

Tool Alexee Coqlex Verbatim

(a) Lexing Time for the string anb on the

ruleset ⟨(a∗b?)∗, a, b⟩

1e−04

1e−02

1e+00

1 3 5 7 9
N

T
im

e
(s

)

Tool Alexee Verbatim

(b) Precomputation Time for the ruleset

⟨(a + b)∗a(a + b)N ⟩

Figure 4.7 : Two microbenchmarks comparing Alexee, Verbatim and Coqlex

136

lexical rule ⟨(a + b)∗a(a + b)N⟩, for varying values of N . The figure shows the pre-

computation time taken by Alexee and Verbatim. In the case of Alexee, this time is

used to compute the Thompson NFA and some results of the depth-first search (see

4.5.1). In the case of Verbatim, the tool computes a partial DFA table where the

states of the DFA correspond to derivatives. Since Coqlex does not have any particu-

lar precomputation step, we exclude it from this comparison. In the case of our tool,

the precomputation time was obtained by instrumenting our code, and in the case of

Verbatim, the precomputation time was obtained by parsing the two character string

ab. We notice that the time taken to finish the necessary precomputation for Verba-

tim grows exponentially with the size of the regex. This is because the minimal DFA

for this family of regexes is of size Ω(2n). For the regex (a + b)∗a(a + b)9, Verbatim

takes 45+ seconds to finish the preprocessing phase and segfaults for larger sizes.

Experimental Setup. The experiments were conducted on a MacBook Air M2

(8 cores) running Ventura 13.6.1 with 8GB of RAM. We used flex version 2.6.4 and

Apple clang version 14.0.3 for compilation. As required by the build instructions

of Verbatim, it was built using version 4.10.2 of the OCaml compiler (Coq version

8.11). Version 4.14.0 of the OCaml compiler was used to build Coqlex, OCamllex and

Alexee. Alexee and Coqlex were extracted using Coq version 8.19 and version 8.15,

respectively.

4.7 Related Work

The maximal-munch rule mentioned in this paper is related to the notion of longest-

leftmost match of POSIX [115] regular expressions. Early mentions of the ‘maximal-

munch’ principle can be found in Cattell’s thesis [155]. Yang et al. have discussed

the applicability of this rule in the context of lexical analysis in [156].

137

A description of a lexing algorithm using automata such as ours can be found in

standard books on compiler construction, such as [157]. We discussed that our algo-

rithm may take quadratic time in the worst case. Reps [158] discusses an algorithm

which executes this process in linear time by keeping track of pairs of positions in the

string and states which do not lead to accepting states. This approach would require

an additional O(M ⋅n) bits to store this information, whereM is the number of states

of the DFA in consideration and n is the length of the string being tokenized.

A widely used approach for tools such as Flex [146] and Lex [159] is to behave as

lexer generators, i.e, generate C code from a grammar which can be compiled down

to an efficient lexer. In contrast, our tool behaves more like an interpreter since no

code generation step is involved. The OCamllex tool [153] is also a lexer generator

that emits OCaml code.

These tools are all based on deterministic automata (DFA), which has the advan-

tage that one needs to maintain only one state identifier instead of a set of active

states. For a grammar with regular expressions that are sufficiently small, this ap-

proach may be more efficient. Another lexer generator is RE2C [160] which is based

on Tagged DFAs [161]. On the other hand, our approach is based on Thompson’s

NFA [149]. A notable regular expression engine (although not a lexer) that is based

on this technique is Google’s RE2 [95], whose implementation details are discussed

on Russ Cox’s website [99]. Other interesting work in the area of lexing includes Plex

[162] which discusses how using a prescanning phase to identify token boundaries can

be used to parallelize lexing and Chakravarty’s work which discusses an approach to

lexing based on combinators in a lazy functional programming language [163].

Nipkow [164] has provided a formalization of DFA-based lexing in Isabelle. While

this formalization is mathematically sound, it leaves out some important implemen-

138

tation details: most importantly, while it formalizes a notion of determinization and

removal of ε-transitions, these notions are based on an abstract formalism of sets

rather than a concrete implementation. While we do not determinize, computing the

ε-closure is indeed a non-trivial step in our formalism, as outlined in Section 4.4.1.

As an intermediate step towards the DFA, Nipkow also builds the Thompson NFA.

A difference here between this work and ours is the way the states are labelled: we

use integer identifiers for our state labels, while a list of Booleans is used in Nipkow’s

formalization. The idea is that the additional bit in a concatenation or an union

automaton is used to indicate the component of the automaton that is being used.

A similar approach is used in the work of Doczkal et al. [132]: they use operations

on finite types to represent the state space of the automata. For example, the state

space of the union automaton is represented in their work as the sum type of the two

finite types that represent the state spaces of the two underlying automata. While our

approach produces a more efficient runtime representation, it makes the verification

of the construction in Section 4.3 more challenging.

Recent efforts in verified lexing include Verbatim [147], Verbatim++ [122] and

Coqlex [148]. All of these are based on Brzozowski derivatives [100] and thus face

potential inefficiency arising from the size of the derivative. Verbatim++ improves

upon its predecessor Verbatim by using a number of optimizations, which relate to the

idea of memoizing the derivatives to avoid recomputation. However, as [148] notes,

this still incurs a substantial overhead. Coqlex improves upon this mainly by manag-

ing the size of the derivatives in an efficient manner: they use smart constructors to

simplify derivatives on the fly, and stop scanning the string early when the derivative

happens to be the empty regular expression. Coqlex’s approach to simplifying deriva-

tives is still not immune to exponential blowup, however, as we have demonstrated

139

in our experiments.

Since derivatives lend themselves to elegant manipulation in functional languages

and are easier to verify, many verified implementations of regular expression matching

are based on them. Coquand and Siles have formalized Brzozowski derivatives in

[121]. A related approach is the use of partial derivatives [123] which have also been

considered for formalization [125, 165, 124]. Derivatives have been used by Zhuchko

et al. [1] to verify a matching procedure for regular expressions with lookaround in

Lean, and by Urban and co-authors [129, 130, 131] to verify POSIX lexing based in

Isabelle/HOL. Notable formalizations of regular languages that do not use derivatives

include the work of Braibant and Pous [136] and Firsov and Uustalu [134], both of

which use matrices.

Pottier [166] discusses a Coq-based formalization where DFS forests are defined

and used to prove the correctness of Kosaraju’s strongly connected components algo-

rithm. Their work is parameterized using a runtime representation of the state of the

algorithm, which is formalized as a record consisting of a type representing the data

structure, a function returning the set of vertices (in a V → Prop representation), a

function which checks the presence of a given vertex, and a function which adds a

vertex to the set. Lammich and Neumann [167] have verified depth-first search algo-

rithms in Isabelle/HOL. Their development is a framework on top of which different

DFS-based algorithms can be built by specifying functions to ‘hook’ into certain ex-

tension points. They demonstrate this by verifying Tarjan’s SCC algorithm in their

framework. Chen and Levy [168] have produced a formal proof for the DFS algorithm

in Why3 [169].

In Section 4.4.1, we used Boolean arrays to represent sets of vertices for DFS.

Because of how we extract these arrays, set operations on them mutate them in place.

140

Inside Coq’s representation, however, this is not how they behave, and thus we rely

on ourselves to check that the older copies of the arrays are not reused. Sakaguchi

[170] has developed a monadic domain-specific language that facilitates the use of

computations using a mutable array, which requires the use of an additional plugin.

Recently, the ‘Functional-But-In-Place’ paradigm has seen some interest, notably in

the implementation of the Lean theorem prover [171, 172, 173]. In this framework,

functional programs are analyzed to determine if older copies of data structures are

reused, and if not, the program reuses the existing space instead of reallocating. This

problem has also been studied under the title of the ‘aggregate update problem’ in

older literature, such as [174].

141

Chapter 5

Conclusion

Temporal logic and regular expressions are two core formalisms used in a number of

domains to specify properties of sequential data. Their usage ranges from searching

for patterns in text files and tokenization of programs to the specification of properties

of cyber-physical systems. Their significance and widespread use make it important

for us to have trusted and efficient algorithms for their application. In this thesis, we

have explored the use of proof assistants to formalize the semantics of certain aspects

of temporal logic and regular expressions, and to verify the correctness of certain

algorithms.

In Chapter 2, we have discussed a novel quantitative semantics for metric tem-

poral logic and proposed an efficient algorithm for its online monitoring. We have

presented a formalization in the Coq proof assistant of our semantics and verified the

construction of these monitors.

In Chapter 3, we have proposed an efficient algorithm for the time matching of

regular expressions with lookarounds. Existing engines that support lookarounds are

based on backtracking, and can take exponential time to match in the worst case.

Engines that are based on the construction of automata do not support lookarounds.

Our novel algorithm has a linear time-complexity, and is based on a decomposition

of the regular expression into subexpressions. We have verified the correctness of our

algorithm in Coq.

In Chapter 4, we have investigated the problem of tokenization, the splitting

142

of a string into tokens based on a ruleset described by regular expressions. We have

formalized an efficient algorithm based on Thompson NFAs. The two main challenges

in the verification effort are related to establishing the path lemmas for the Thompson

construction, and the formalization of depth-first search. We have also proposed a

simple way to modify the extraction process so that arrays are mutated in place.

We have extracted each of our verified algorithms as executable code, and evalu-

ated their performance against other state-of-the-art tools. Our empirical results show

that our algorithms obey the theoretical complexity bounds we have established, and

are also competitive with existing tools on realistic benchmarks.

5.1 Future Work

While the performance of our formalized algorithms is generally competitive, they

could be improved further using careful implementation techniques. While our ex-

traction targets are Haskell or OCaml, one could produce a verified program in a

lower-level language such as C using, for example, a toolchain such as Verified C

[175]. This would allow us to reduce a number of overheads, such as the cost of

memory allocation and garbage collection, and would also make it more suitable

for deployment into resource-constrained environments such as embedded systems,

microcontrollers or IoT devices.

The construction of our formalization of our verified monitors for temporal logic

could be further streamlined using dataflow combinators (serial, parallel and feedback

composition), as seen in [176, 45]. Our future work has extended the monitoring

algorithm from lattice-based semantics to semiring-based semantics [36], and from

past-only discrete time to bounded-future continuous time semantics [17]. These

extended algorithms are yet to be verified in Coq. Another interesting direction

143

would be to extend our quantitative semantics and monitoring algorithm to dynamic

logic, as has been done in [90] in a qualitative setting.

Our work in [28] discusses a number of optimizations that could be applied to

improve the performance of our algorithm for regular expressions with lookarounds

for a wide range of practical scenarios. For example, in the case that a regular

expression consists solely of lookaheads or lookbehinds, the evaluation could be done

in a streaming manner in a single pass, and would require only an O(m) amount of

memory (instead of O(m ⋅ n)). When the lookaheads are bounded and sufficiently

small, they could be also eliminated by rewriting the expression. It would also be

interesting to investigate the formalization of some of the aspects of the complexity

results. This could be done by, for instance, establishing bounds on the size of the

intermediate regular expressions. It may be possible to give a complete algebraic

axiomatization of simple cases of lookaround (e.g., anchors and word boundaries)

using the approach of Kleene algebra with extra equations [177, 140, 178, 179, 180].

The axiomatization of general lookaround is more challenging, as it can encode some

kinds of intersection.

Industrial strength tools such as Flex and OCamllex remain faster than our ver-

ified tokenization tool, Alexee. Future work would involve incorporating lower-level

tricks, such as code generation, which would improve throughput. In a number of

practical scenarios where the NFAs are small enough, determinization would improve

the throughput since the need for exploration using depth-first search would be elimi-

nated. We also expect a number of realistic tokenization rulesets to use deterministic

regular expressions [181, 182], in which case the determinization step would be unnec-

essary, and the depth-first search could also be eliminated. A related scenario would

arise when the regular expressions express k-lookahead determinism [183], in which

144

case looking at the next k characters would be sufficient to determine the next state.

145

Bibliography

[1] E. Zhuchko, M. Veanes, and G. Ebner, “Lean formalization of extended regular

expression matching with lookarounds,” in Proceedings of the 13th ACM SIG-

PLAN International Conference on Certified Programs and Proofs, CPP 2024,

(New York, NY, USA), p. 118–131, ACM, 2024.

[2] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili, “Regular model checking,”

in Computer Aided Verification (E. A. Emerson and A. P. Sistla, eds.), (Berlin,

Heidelberg), pp. 403–418, Springer, 2000.

[3] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded model

checking,” Handbook of satisfiability, vol. 185, no. 99, pp. 457–481, 2009.

[4] E. M. Clarke, O. Grumberg, and K. Hamaguchi, “Another look at LTL model

checking,” Formal Methods in System Design, vol. 10, no. 1, pp. 47–71, 1997.

[5] T. Ringer, K. Palmskog, I. Sergey, M. Gligoric, and Z. Tatlock, “QED at large:

A survey of engineering of formally verified software,” Foundations and Trends

in Programming Languages, vol. 5, p. 102–281, sep 2019.

[6] B. Hoxha, H. Abbas, and G. Fainekos, “Benchmarks for temporal logic re-

quirements for automotive systems,” in ARCH14-15. 1st and 2nd Interna-

tional Workshop on Applied veRification for Continuous and Hybrid Systems

(G. Frehse and M. Althoff, eds.), vol. 34 of EPiC Series in Computing, pp. 25–

30, EasyChair, 2015.

146

[7] F. Cameron, G. Fainekos, D. M. Maahs, and S. Sankaranarayanan, “Towards a

verified artificial pancreas: Challenges and solutions for runtime verification,” in

Runtime Verification (E. Bartocci and R. Majumdar, eds.), (Cham), pp. 3–17,

Springer, 2015.

[8] G. Juniwal, A. Donzé, J. C. Jensen, and S. A. Seshia, “CPSGrader: Synthesiz-

ing temporal logic testers for auto-grading an embedded systems laboratory,” in

Proceedings of the 14th International Conference on Embedded Software, EM-

SOFT ’14, (New York, NY, USA), ACM, 2014.

[9] M. Roesch, “Snort - lightweight intrusion detection for networks,” in Proceedings

of the 13th USENIX Conference on System Administration, LISA ’99, (USA),

pp. 229–238, USENIX Association, 1999.

[10] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and memory-

efficient regular expression matching for deep packet inspection,” in Proceedings

of the 2006 ACM/IEEE Symposium on Architecture for Networking and Com-

munications Systems, ANCS ’06, (New York, NY, USA), pp. 93–102, ACM,

2006.

[11] T. T. Ngoc, T. T. Hieu, H. Ishii, and S. Tomiyama, “Memory-efficient signature

matching for clamav on FPGA,” in 2014 IEEE Fifth International Conference

on Communications and Electronics (ICCE), pp. 358–363, 2014.

[12] I. Roy and S. Aluru, “Discovering motifs in biological sequences using the Mi-

cron Automata Processor,” IEEE/ACM Transactions on Computational Biol-

ogy and Bioinformatics, vol. 13, no. 1, pp. 99–111, 2016.

147

[13] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium on

Foundations of Computer Science (sfcs 1977), pp. 46–57, 1977.

[14] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Ničković, and

S. Sankaranarayanan, “Specification-based monitoring of cyber-physical sys-

tems: A survey on theory, tools and applications,” in Lectures on Runtime

Verification (E. Bartocci and Y. Falcone, eds.), vol. 10457 of LNCS, pp. 135–

175, Cham: Springer, 2018.

[15] R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-

Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

[16] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous sig-

nals,” in FTRTFT 2004, FORMATS 2004 (Y. Lakhnech and S. Yovine, eds.),

vol. 3253 of LNCS, (Heidelberg), pp. 152–166, Springer, 2004.

[17] K. Mamouras, A. Chattopadhyay, and Z. Wang, “A compositional framework

for quantitative online monitoring over continuous-time signals,” in RV 2021

(L. Feng and D. Fisman, eds.), vol. 12974 of LNCS, (Cham), pp. 142–163,

Springer, 2021.

[18] K. Mamouras, A. Chattopadhyay, and Z. Wang, “A compositional framework

for algebraic quantitative online monitoring over continuous-time signals,” In-

ternational Journal on Software Tools for Technology Transfer, vol. 25, no. 4,

pp. 557–573, 2023.

[19] S. C. Kleene, “Representation of events in nerve nets and finite automata,” in

Automata Studies (C. E. Shannon and J. McCarthy, eds.), no. 34 in Annals of

Mathematics Studies, pp. 3–41, Princeton University Press, 1956.

148

[20] M. O. Rabin and D. Scott, “Finite automata and their decision problems,” IBM

Journal of Research and Development, vol. 3, no. 2, pp. 114–125, 1959.

[21] W. L. Johnson, J. H. Porter, S. I. Ackley, and D. T. Ross, “Automatic gener-

ation of efficient lexical processors using finite state techniques,” Communica-

tions of the ACM, vol. 11, no. 12, pp. 805–813, 1968.

[22] K. Thompson, “Programming techniques: Regular expression search algo-

rithm,” Communications of the ACM, vol. 11, no. 6, pp. 419–422, 1968.

[23] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to bibli-

ographic search,” Communications of the ACM, vol. 18, no. 6, pp. 333–340,

1975.

[24] L. Kong, Q. Yu, A. Chattopadhyay, A. Le Glaunec, Y. Huang, K. Mamouras,

and K. Yang, “Software-hardware codesign for efficient in-memory regular pat-

tern matching,” in Proceedings of the 43rd ACM SIGPLAN International Con-

ference on Programming Language Design and Implementation, PLDI 2022,

(New York, NY, USA), p. 733–748, ACM, 2022.

[25] A. Le Glaunec, L. Kong, and K. Mamouras, “Regular expression matching using

bit vector automata,” Proceedings of the ACM on Programming Languages,

vol. 7, no. OOPSLA1, pp. 92:1–92:30, 2023.

[26] Z. Wen, L. Kong, A. Le Glaunec, K. Mamouras, and K. Yang, “BVAP: Energy

and memory efficient automata processing for regular expressions,” in Proceed-

ings of the 29th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Volume 2, ASPLOS ’24, (New

York, NY, USA), pp. 151–166, ACM, 2024.

149

[27] A. Chattopadhyay and K. Mamouras, “A verified online monitor for metric tem-

poral logic with quantitative semantics,” in Runtime Verification (J. Deshmukh

and D. Ničković, eds.), (Cham), pp. 383–403, Springer, 2020.

[28] K. Mamouras and A. Chattopadhyay, “Efficient matching of regular expres-

sions with lookaround assertions,” Proceedings of the ACM on Programming

Languages, vol. 8, no. POPL, pp. 92:1–92:31, 2024.

[29] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications

for continuous-time signals,” Theoretical Computer Science, vol. 410, no. 42,

pp. 4262–4291, 2009.

[30] D. Ulus, “The Reelay monitoring tool.” https://doganulus.github.io/

reelay/, 2021. [Online; accessed August 20, 2021].

[31] D. Kozen, “A completeness theorem for Kleene algebras and the algebra of

regular events,” Information and Computation, vol. 110, no. 2, pp. 366–390,

1994.

[32] A. Asperti, “A compact proof of decidability for regular expression equivalence,”

in Interactive Theorem Proving (L. Beringer and A. Felty, eds.), (Berlin, Hei-

delberg), pp. 283–298, Springer, 2012.

[33] S. Fischer, F. Huch, and T. Wilke, “A play on regular expressions: Functional

pearl,” in Proceedings of the 15th ACM SIGPLAN International Conference on

Functional Programming, (New York, NY, USA), p. 357–368, ACM, 2010.

[34] The PCRE2 Developers, “Perl-compatible regular expressions (revised

API: PCRE2).” https://pcre2project.github.io/pcre2/doc/html/index.

html, 2022. [Online; accessed Feb 26, 2023].

https://doganulus.github.io/reelay/
https://doganulus.github.io/reelay/
https://pcre2project.github.io/pcre2/doc/html/index.html
https://pcre2project.github.io/pcre2/doc/html/index.html

150

[35] Oracle, “Java regex matching.” https://docs.oracle.com/javase/8/docs/

api/java/util/regex/Pattern.html. [Online; accessed Feb 28, 2024].

[36] K. Mamouras, A. Chattopadhyay, and Z. Wang, “Algebraic quantitative seman-

tics for efficient online temporal monitoring,” in TACAS 2021 (J. F. Groote and

K. G. Larsen, eds.), vol. 12651 of LNCS, (Cham), pp. 330–348, Springer, 2021.

[37] K. Mamouras, A. Le Glaunec, W. A. Li, and A. Chattopadhyay, “Static analysis

for checking the disambiguation robustness of regular expressions,” Proceedings

of the ACM on Programming Languages, vol. 8, no. PLDI, pp. 231:1–231:25,

2024.

[38] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous

signals,” in FTRTFT/FORMATS 2004 (Y. Lakhnech and S. Yovine, eds.),

vol. 3253 of LNCS, (Berlin, Heidelberg), pp. 152–166, Springer, 2004.

[39] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. Van Campen-

hout, “Reasoning with temporal logic on truncated paths,” in CAV 2003 (W. A.

Hunt and F. Somenzi, eds.), (Berlin, Heidelberg), pp. 27–39, Springer, 2003.

[40] The Coq development team, “The Coq proof assistant.” https://coq.inria.

fr, 2021. [Online; accessed August 20, 2021].

[41] G. Fainekos, B. Hoxha, and S. Sankaranarayanan, “Robustness of specifications

and its applications to falsification, parameter mining, and runtime monitoring

with S-TaLiRo,” in Runtime Verification (B. Finkbeiner and L. Mariani, eds.),

(Cham), pp. 27–47, Springer, 2019.

[42] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-

valued signals,” in FORMATS 2010 (K. Chatterjee and T. A. Henzinger, eds.),

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://coq.inria.fr
https://coq.inria.fr

151

vol. 6246 of LNCS, (Heidelberg), pp. 92–106, Springer, 2010.

[43] D. Lemire, “Streaming maximum-minimum filter using no more than three

comparisons per element,” Nordic Journal of Computing, vol. 13, no. 4, pp. 328–

339, 2006.

[44] A. Chlipala, Certified Programming with Dependent Types : a pragmatic in-

troduction to the Coq proof assistant, ch. 5. Cambridge, MA: The MIT Press,

2013.

[45] K. Mamouras and Z. Wang, “Online signal monitoring with bounded lag,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 39, no. 11, pp. 3868–3880, 2020.

[46] A. Pnueli and A. Zaks, “On the merits of temporal testers,” in 25 Years of Model

Checking: History, Achievements, Perspectives (O. Grumberg and H. Veith,

eds.), vol. 5000 of LNCS, pp. 172–195, Heidelberg: Springer, 2008.

[47] O. Maler, D. Nickovic, and A. Pnueli, “Real time temporal logic: Past, present,

future,” in FORMATS 2005 (P. Pettersson and W. Yi, eds.), vol. 3829 of LNCS,

(Heidelberg), pp. 2–16, Springer, 2005.

[48] T. Ferrère, O. Maler, D. Ničković, and A. Pnueli, “From real-time logic to timed

automata,” Journal of the ACM, vol. 66, no. 3, pp. 19:1–19:31, 2019.

[49] K. Mamouras, M. Raghothaman, R. Alur, Z. G. Ives, and S. Khanna,

“StreamQRE: Modular specification and efficient evaluation of quantitative

queries over streaming data,” in Proceedings of the 38th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI ’17, (New

York, NY, USA), pp. 693–708, ACM, 2017.

152

[50] L. Kong and K. Mamouras, “StreamQL: A query language for processing

streaming time series,” Proceedings of the ACM on Programming Languages,

vol. 4, no. OOPSLA, pp. 183:1–183:32, 2020.

[51] R. Alur, D. Fisman, and M. Raghothaman, “Regular programming for quanti-

tative properties of data streams,” in ESOP 2016 (P. Thiemann, ed.), vol. 9632

of LNCS, (Berlin, Heidelberg), pp. 15–40, Springer, 2016.

[52] R. Alur and K. Mamouras, “An introduction to the StreamQRE language,”

Dependable Software Systems Engineering, vol. 50, pp. 1–24, 2017.

[53] R. Alur, K. Mamouras, and D. Ulus, “Derivatives of quantitative regular ex-

pressions,” in Models, Algorithms, Logics and Tools: Essays Dedicated to Kim

Guldstrand Larsen on the Occasion of His 60th Birthday (L. Aceto, G. Bacci,

G. Bacci, A. Ingólfsdóttir, A. Legay, and R. Mardare, eds.), vol. 10460 of LNCS,

pp. 75–95, Cham: Springer, 2017.

[54] H. Abbas, R. Alur, K. Mamouras, R. Mangharam, and A. Rodionova, “Real-

time decision policies with predictable performance,” Proceedings of the IEEE,

Special Issue on Design Automation for Cyber-Physical Systems, vol. 106, no. 9,

pp. 1593–1615, 2018.

[55] H. Abbas, A. Rodionova, K. Mamouras, E. Bartocci, S. A. Smolka,

and R. Grosu, “Quantitative regular expressions for arrhythmia detec-

tion,” IEEE/ACM Transactions on Computational Biology and Bioinformatics,

vol. 16, no. 5, pp. 1586–1597, 2019.

[56] R. Alur, K. Mamouras, and C. Stanford, “Automata-based stream processing,”

in Proceedings of the 44th International Colloquium on Automata, Languages,

153

and Programming (ICALP 2017) (I. Chatzigiannakis, P. Indyk, F. Kuhn, and

A. Muscholl, eds.), vol. 80 of Leibniz International Proceedings in Informatics

(LIPIcs), (Dagstuhl, Germany), pp. 112:1–112:15, Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, 2017.

[57] R. Alur, K. Mamouras, and C. Stanford, “Modular quantitative monitor-

ing,” Proceedings of the ACM on Programming Languages, vol. 3, no. POPL,

pp. 50:1–50:31, 2019.

[58] R. Alur, D. Fisman, K. Mamouras, M. Raghothaman, and C. Stanford,

“Streamable regular transductions,” Theoretical Computer Science, vol. 807,

pp. 15–41, 2020.

[59] A. Donzé, T. Ferrère, and O. Maler, “Efficient robust monitoring for STL,” in

CAV 2013 (N. Sharygina and H. Veith, eds.), vol. 8044 of LNCS, (Heidelberg),

pp. 264–279, Springer, 2013.

[60] A. Dokhanchi, B. Hoxha, and G. Fainekos, “On-line monitoring for tempo-

ral logic robustness,” in RV 2014 (B. Bonakdarpour and S. A. Smolka, eds.),

vol. 8734 of LNCS, (Cham), pp. 231–246, Springer, 2014.

[61] D. Basin, F. Klaedtke, and E. Zalinescu, “Greedily computing associative ag-

gregations on sliding windows,” Information Processing Letters, vol. 115, no. 2,

pp. 186–192, 2015.

[62] The Valgrind Developers, “Valgrind: An instrumentation framework for build-

ing dynamic analysis tools.” https://valgrind.org/, 2021. [Online; accessed

August 20, 2021].

https://valgrind.org/

154

[63] D. Ulus, “Timescales: A benchmark generator for MTL monitoring tools,” in

RV 2019 (B. Finkbeiner and L. Mariani, eds.), vol. 11757 of LNCS, (Cham),

pp. 402–412, Springer, 2019.

[64] N. Markey and P. Schnoebelen, “Model checking a path,” in CONCUR 2003

- Concurrency Theory (R. Amadio and D. Lugiez, eds.), (Berlin, Heidelberg),

pp. 251–265, Springer, 2003.

[65] K. Sen, G. Roşu, and G. Agha, “Generating optimal linear temporal logic

monitors by coinduction,” in Advances in Computing Science – ASIAN 2003.

Progamming Languages and Distributed Computation Programming Languages

and Distributed Computation (V. A. Saraswat, ed.), (Berlin, Heidelberg),

pp. 260–275, Springer, 2003.

[66] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,” Formal

Methods in System Design, vol. 19, no. 3, pp. 291–314, 2001.

[67] O. Kupferman and M. Y. Vardi, “Freedom, weakness, and determinism: from

linear-time to branching-time,” in Proceedings. Thirteenth Annual IEEE Sym-

posium on Logic in Computer Science (Cat. No.98CB36226), pp. 81–92, 1998.

[68] P. Thati and G. Rosu, “Monitoring algorithms for metric temporal logic speci-

fications,” Electronic Notes in Theoretical Computer Science, vol. 113, pp. 145–

162, 2005. Proceedings of the Fourth Workshop on Runtime Verification (RV

2004).

[69] S. Jakšić, E. Bartocci, R. Grosu, and D. Ničković, “An algebraic framework for

runtime verification,” IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, vol. 37, no. 11, pp. 2233–2243, 2018.

155

[70] S. Jakšić, E. Bartocci, R. Grosu, T. Nguyen, and D. Ničković, “Quantitative

monitoring of STL with edit distance,” Formal Methods in System Design,

vol. 53, no. 1, pp. 83–112, 2018.

[71] T. Akazaki and I. Hasuo, “Time robustness in MTL and expressivity in hybrid

system falsification,” in CAV 2015 (D. Kroening and C. S. Păsăreanu, eds.),

vol. 9207 of LNCS, (Cham), pp. 356–374, Springer, 2015.

[72] J. V. Deshmukh, R. Majumdar, and V. S. Prabhu, “Quantifying conformance

using the Skorokhod metric,” Formal Methods in System Design, vol. 50, no. 2-

3, pp. 168–206, 2017.

[73] H. Abbas and R. Mangharam, “Generalized robust MTL semantics for problems

in cardiac electrophysiology,” in 2018 Annual American Control Conference

(ACC), pp. 1592–1597, IEEE, 2018.

[74] A. Rodionova, E. Bartocci, D. Nickovic, and R. Grosu, “Temporal logic as

filtering,” in International Conference on Hybrid Systems: Computation and

Control (HSCC 2016), pp. 11–20, ACM, 2016.

[75] D. Ulus, T. Ferrère, E. Asarin, and O. Maler, “Timed pattern matching,” in

FORMATS 2014 (A. Legay and M. Bozga, eds.), vol. 8711 of LNCS, (Cham),

pp. 222–236, Springer, 2014.

[76] E. Asarin, P. Caspi, and O. Maler, “Timed regular expressions,” Journal of the

ACM, vol. 49, no. 2, pp. 172–206, 2002.

[77] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer

Science, vol. 126, no. 2, pp. 183–235, 1994.

156

[78] A. Bakhirkin, T. Ferrère, O. Maler, and D. Ulus, “On the quantitative semantics

of regular expressions over real-valued signals,” in FORMATS 2017 (A. Abate

and G. Geeraerts, eds.), vol. 10419 of LNCS, (Cham), pp. 189–206, Springer,

2017.

[79] A. Bakhirkin and N. Basset, “Specification and efficient monitoring beyond

STL,” in TACAS 2019 (T. Vojnar and L. Zhang, eds.), vol. 11428 of LNCS,

(Cham), pp. 79–97, Springer, 2019.

[80] O. Maler and D. Ničković, “Monitoring properties of analog and mixed-signal

circuits,” International Journal on Software Tools for Technology Transfer,

vol. 15, no. 3, pp. 247–268, 2013.

[81] D. Ničković, O. Lebeltel, O. Maler, T. Ferrère, and D. Ulus, “AMT 2.0: Quali-

tative and quantitative trace analysis with Extended Signal Temporal Logic,” in

TACAS 2018 (D. Beyer and M. Huisman, eds.), (Cham), pp. 303–319, Springer,

2018.

[82] A. Donzé, “Breach, a toolbox for verification and parameter synthesis of hybrid

systems,” in CAV 2010 (T. Touili, B. Cook, and P. Jackson, eds.), vol. 6174 of

LNCS, (Heidelberg), pp. 167–170, Springer, 2010.

[83] T. Dreossi, T. Dang, A. Donzé, J. Kapinski, X. Jin, and J. V. Deshmukh, “Ef-

ficient guiding strategies for testing of temporal properties of hybrid systems,”

in NFM 2015 (K. Havelund, G. Holzmann, and R. Joshi, eds.), vol. 9058 of

LNCS, (Cham), pp. 127–142, Springer, 2015.

[84] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson, B. Finkbeiner,

H. B. Sipma, S. Mehrotra, and Z. Manna, “LOLA: Runtime monitoring of

157

synchronous systems,” in 12th International Symposium on Temporal Repre-

sentation and Reasoning (TIME 2005), pp. 166–174, IEEE, 2005.

[85] P. Faymonville, B. Finkbeiner, M. Schwenger, and H. Torfah, “Real-time

stream-based monitoring,” CoRR, vol. abs/1711.03829, 2017.

[86] P. Faymonville, B. Finkbeiner, M. Schledjewski, M. Schwenger, M. Stenger,

L. Tentrup, and H. Torfah, “StreamLAB: Stream-based monitoring of cyber-

physical systems,” in CAV 2019 (I. Dillig and S. Tasiran, eds.), vol. 11561 of

LNCS, (Cham), pp. 421–431, Springer, 2019.

[87] J. O. Blech, Y. Falcone, and K. Becker, “Towards certified runtime verification,”

in ICFEM 2012 (T. Aoki and K. Taguchi, eds.), vol. 7635 of LNCS, (Heidelberg),

pp. 494–509, Springer, 2012.

[88] D. Basin, F. Klaedtke, and E. Zalinescu, “The MonPoly monitoring tool,” in

RV-CuBES 2017 (G. Reger and K. Havelund, eds.), vol. 3 of Kalpa Publications

in Computing, pp. 19–28, EasyChair, 2017.

[89] J. Schneider, D. Basin, S. Krstić, and D. Traytel, “A formally verified monitor

for metric first-order temporal logic,” in RV 2019 (B. Finkbeiner and L. Mariani,

eds.), vol. 11757 of LNCS, (Cham), pp. 310–328, Springer, 2019.

[90] D. Basin, T. Dardinier, L. Heimes, S. Krstić, M. Raszyk, J. Schneider, and

D. Traytel, “A formally verified, optimized monitor for metric first-order dy-

namic logic,” in IJCAR 2020 (N. Peltier and V. Sofronie-Stokkermans, eds.),

vol. 12166 of LNCS, (Cham), pp. 432–453, Springer, 2020.

[91] B. Finkbeiner, S. Oswald, N. Passing, and M. Schwenger, “Verified Rust

158

monitors for Lola specifications,” in Runtime Verification (J. Deshmukh and

D. Ničković, eds.), (Cham), pp. 431–450, Springer, 2020.

[92] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification infras-

tructure for permission-based reasoning,” in Verification, Model Checking, and

Abstract Interpretation (B. Jobstmann and K. R. M. Leino, eds.), (Berlin, Hei-

delberg), pp. 41–62, Springer, 2016.

[93] M. Berglund, F. Drewes, and B. van der Merwe, “Analyzing catastrophic back-

tracking behavior in practical regular expression matching,” in Automata and

Formal Languages 2014 (AFL 2014) (Z. Ésik and Z. Fülöp, eds.), vol. 151 of

Electronic Proceedings in Theoretical Computer Science (EPTCS), pp. 109–123,

Open Publishing Association, 2014.

[94] J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee, “The impact of regu-

lar expression denial of service (redos) in practice: An empirical study at the

ecosystem scale,” in Proceedings of the 2018 26th ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium on the Foundations

of Software Engineering, ESEC/FSE 2018, (New York, NY, USA), p. 246–256,

ACM, 2018.

[95] “RE2: Google’s regular expression library.” https://github.com/google/re2,

2023.

[96] “Intel’s Hyperscan: A high-performance multiple regex matching library.”

https://github.com/intel/hyperscan, 2023.

[97] T. Miyazaki and Y. Minamide, “Derivatives of regular expressions with looka-

head,” Journal of Information Processing, vol. 27, pp. 422–430, 2019.

https://github.com/google/re2
https://github.com/intel/hyperscan

159

[98] T. Nipkow and D. Traytel, “Unified decision procedures for regular expression

equivalence,” in Interactive Theorem Proving (G. Klein and R. Gamboa, eds.),

(Cham), pp. 450–466, Springer, 2014.

[99] R. Cox, “Regular expression matching in the wild.” https://swtch.com/~rsc/

regexp/regexp3.html, 2010.

[100] J. A. Brzozowski, “Derivatives of regular expressions,” Journal of the ACM,

vol. 11, p. 481–494, oct 1964.

[101] S. M. Kearns, “Extending regular expressions with context operators and parse

extraction,” Softw. Pract. Exper., vol. 21, p. 787–804, jul 1991.

[102] Y. Sakuma, Y. Minamide, and A. Voronkov, “Translating regular expression

matching into transducers,” Journal of Applied Logic, vol. 10, no. 1, pp. 32–

51, 2012. Special issue on Automated Specification and Verification of Web

Systems.

[103] B. Ford, “Parsing expression grammars: A recognition-based syntactic founda-

tion,” in Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, POPL ’04, (New York, NY, USA), pp. 111–

122, ACM, 2004.

[104] V. Benzaken, G. Castagna, and A. Frisch, “CDuce: An XML-centric general-

purpose language,” in Proceedings of the Eighth ACM SIGPLAN International

Conference on Functional Programming, ICFP ’03, (New York, NY, USA),

pp. 51–63, ACM, 2003.

[105] B. B. Grathwohl, F. Henglein, U. T. Rasmussen, K. A. Søholm, and S. P.

Tørholm, “Kleenex: Compiling nondeterministic transducers to deterministic

https://swtch.com/~rsc/regexp/regexp3.html
https://swtch.com/~rsc/regexp/regexp3.html

160

streaming transducers,” in Proceedings of the 43rd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’16,

(New York, NY, USA), pp. 284–297, ACM, 2016.

[106] T. Miyazaki and Y. Minamide, “Context-free grammars with lookahead,” in

LATA 2021 (A. Leporati, C. Mart́ın-Vide, D. Shapira, and C. Zandron, eds.),

vol. 12638 of LNCS, (Cham), pp. 213–225, Springer, 2021.

[107] T. Miyazaki and Y. Minamide, “Derivatives of context-free grammars with

lookahead,” Journal of Information Processing, vol. 31, pp. 421–431, 2023.

[108] A. Asperti, C. S. Coen, and E. Tassi, “Regular expressions, au point,” 2010.

[109] A. Barrière and C. Pit-Claudel, “Linear matching of JavaScript regular expres-

sions,” Proceedings of the ACM on Programming Languages, vol. 8, jun 2024.

[110] H. Fujinami and I. Hasuo, “Efficient matching with memoization for regexes

with look-around and atomic grouping,” in Programming Languages and Sys-

tems (S. Weirich, ed.), (Cham), pp. 90–118, Springer Nature Switzerland, 2024.

[111] R. Pike, “The text editor sam,” Software: Practice and Experience, vol. 17,

no. 11, pp. 813–845, 1987.

[112] A. Barrière and C. Pit-Claudel, “Linear matching of javascript regular expres-

sions,” 2023.

[113] A. Frisch and L. Cardelli, “Greedy regular expression matching,” in ICALP

2004 (J. Dı́az, J. Karhumäki, A. Lepistö, and D. Sannella, eds.), vol. 3142 of

LNCS, (Berlin, Heidelberg), pp. 618–629, Springer, 2004.

161

[114] L. Nielsen and F. Henglein, “Bit-coded regular expression parsing,” in LATA

2011 (A.-H. Dediu, S. Inenaga, and C. Mart́ın-Vide, eds.), vol. 6638 of LNCS,

(Berlin, Heidelberg), pp. 402–413, Springer, 2011.

[115] “IEEE standard for information technology - portable operating system inter-

face (POSIX(R)),” IEEE Std 1003.1-2008 (Revision of IEEE Std 1003.1-2004),

pp. 1–3874, 2008.

[116] M. Berglund, B. van der Merwe, and S. van Litsenborgh, “Regular expressions

with lookahead,” JUCS - Journal of Universal Computer Science, vol. 27, no. 4,

pp. 324–340, 2021.

[117] A. Morihata, “Translation of regular expression with lookahead into finite state

automaton,” Computer Software, vol. 29, no. 1, pp. 147–158, 2012.

[118] L. J. Stockmeyer, The complexity of decision problems in automata theory and

logic. PhD thesis, Massachusetts Institute of Technology, 1974.

[119] G. Roşu and M. Viswanathan, “Testing extended regular language member-

ship incrementally by rewriting,” in Rewriting Techniques and Applications

(R. Nieuwenhuis, ed.), (Berlin, Heidelberg), pp. 499–514, Springer, 2003.

[120] G. Roşu, “An effective algorithm for the membership problem for extended

regular expressions,” in Foundations of Software Science and Computational

Structures (H. Seidl, ed.), (Berlin, Heidelberg), pp. 332–345, Springer, 2007.

[121] T. Coquand and V. Siles, “A decision procedure for regular expression equiv-

alence in type theory,” in CPP 2011 (J.-P. Jouannaud and Z. Shao, eds.),

vol. 7086 of LNCS, (Berlin, Heidelberg), pp. 119–134, Springer, 2011.

162

[122] D. Egolf, S. Lasser, and K. Fisher, “Verbatim++: Verified, optimized, and se-

mantically rich lexing with derivatives,” in Proceedings of the 11th ACM SIG-

PLAN International Conference on Certified Programs and Proofs, CPP 2022,

(New York, NY, USA), pp. 27–39, ACM, 2022.

[123] V. Antimirov, “Partial derivatives of regular expressions and finite automaton

constructions,” Theoretical Computer Science, vol. 155, no. 2, pp. 291–319,

1996.

[124] V. Komendantsky, “Reflexive toolbox for regular expression matching: Veri-

fication of functional programs in Coq+Ssreflect,” in Proceedings of the Sixth

Workshop on Programming Languages Meets Program Verification, PLPV ’12,

(New York, NY, USA), pp. 61–70, ACM, 2012.

[125] N. Moreira, D. Pereira, and S. Melo de Sousa, “Deciding regular expressions

(in-)equivalence in Coq,” in RAMiCS 2012 (W. Kahl and T. G. Griffin, eds.),

vol. 7560 of LNCS, (Berlin, Heidelberg), pp. 98–113, Springer, 2012.

[126] C. Stanford, M. Veanes, and N. Bjørner, “Symbolic boolean derivatives for

efficiently solving extended regular expression constraints,” in Proceedings of

the 42nd ACM SIGPLAN International Conference on Programming Language

Design and Implementation, PLDI 2021, (New York, NY, USA), p. 620–635,

ACM, 2021.

[127] I. E. Varatalu, M. Veanes, and J.-P. Ernits, “Derivative based extended regular

expression matching supporting intersection, complement and lookarounds,”

2023.

[128] D. Moseley, M. Nishio, J. Perez Rodriguez, O. Saarikivi, S. Toub, M. Veanes,

163

T. Wan, and E. Xu, “Derivative based nonbacktracking real-world regex match-

ing with backtracking semantics,” Proceedings of the ACM on Programming

Languages, vol. 7, jun 2023.

[129] C. Urban, “POSIX lexing with derivatives of regular expressions,” Journal of

Automated Reasoning, vol. 67, jul 2023.

[130] C. Tan and C. Urban, “POSIX lexing with bitcoded derivatives,” in 14th In-

ternational Conference on Interactive Theorem Proving (ITP 2023) (A. Nau-

mowicz and R. Thiemann, eds.), vol. 268 of Leibniz International Proceedings in

Informatics (LIPIcs), (Dagstuhl, Germany), pp. 27:1–27:18, Schloss Dagstuhl

– Leibniz-Zentrum für Informatik, 2023.

[131] F. Ausaf, R. Dyckhoff, and C. Urban, “Posix lexing with derivatives of regular

expressions (proof pearl),” in Interactive Theorem Proving (J. C. Blanchette

and S. Merz, eds.), (Cham), pp. 69–86, Springer, 2016.

[132] C. Doczkal, J.-O. Kaiser, and G. Smolka, “A constructive theory of regular lan-

guages in Coq,” in Certified Programs and Proofs (G. Gonthier and M. Norrish,

eds.), (Cham), pp. 82–97, Springer, 2013.

[133] C. Doczkal and G. Smolka, “Two-way automata in Coq,” in Interactive Theorem

Proving (J. C. Blanchette and S. Merz, eds.), (Cham), pp. 151–166, Springer,

2016.

[134] D. Firsov and T. Uustalu, “Certified parsing of regular languages,” in Certified

Programs and Proofs (G. Gonthier and M. Norrish, eds.), (Cham), pp. 98–113,

Springer, 2013.

164

[135] O. Kammar and K. Marek, “Idris tyre: a dependently typed regex parser,”

2023.

[136] T. Braibant and D. Pous, “Deciding Kleene Algebras in Coq,” in ITP, vol. 6172

of LNCS, (Edinburgh, United Kingdom), pp. 163–178, Springer, Aug. 2010.

[137] J. H. Conway, Regular Algebra and Finite Machines. London: Chapman and

Hall, 1971.

[138] A. Salomaa, “Two complete axiom systems for the algebra of regular events,”

Journal of the ACM, vol. 13, p. 158–169, jan 1966.

[139] V. N. Redko, “On defining relations for the algebra of regular events,” Ukrainskii

Matematicheskii Zhurnal, vol. 16, pp. 120–126, 1964.

[140] D. Kozen and K. Mamouras, “Kleene algebra with equations,” in ICALP 2014

(J. Esparza, P. Fraigniaud, T. Husfeldt, and E. Koutsoupias, eds.), vol. 8573 of

LNCS, (Berlin, Heidelberg), pp. 280–292, Springer, 2014.

[141] K. Thompson, “Reflections on trusting trust,” Communications of the ACM,

vol. 27, p. 761–763, aug 1984.

[142] J. Xu, K. Lu, Z. Du, Z. Ding, L. Li, Q. Wu, M. Payer, and B. Mao, “Silent

bugs matter: A study of compiler-introduced security bugs,” in 32nd USENIX

Security Symposium (USENIX Security 23), (Anaheim, CA), pp. 3655–3672,

USENIX Association, Aug. 2023.

[143] X. Leroy, S. Blazy, D. Kästner, B. Schommer, M. Pister, and C. Ferdinand,

“CompCert - A Formally Verified Optimizing Compiler,” in ERTS 2016: Em-

165

bedded Real Time Software and Systems, 8th European Congress, (Toulouse,

France), SEE, Jan. 2016.

[144] X. Leroy, “Formal certification of a compiler back-end or: programming a com-

piler with a proof assistant,” in Conference Record of the 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’06,

(New York, NY, USA), p. 42–54, ACM, 2006.

[145] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “CakeML: a verified

implementation of ML,” in Proceedings of the 41st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’14, (New York,

NY, USA), p. 179–191, ACM, 2014.

[146] Vern Paxson, “Flex: The fast lexical analyzer.” https://github.com/westes/

flex. [Online; accessed May 22, 2024].

[147] D. Egolf, S. Lasser, and K. Fisher, “Verbatim: A verified lexer generator,” in

2021 IEEE Security and Privacy Workshops (SPW), pp. 92–100, 2021.

[148] W. Ouedraogo, G. Scherer, and L. Straßburger, “Coqlex: Generating formally

verified lexers,” Art Sci. Eng. Program., vol. 8, no. 1, 2023.

[149] K. Thompson, “Programming techniques: Regular expression search algo-

rithm,” Communications of the ACM, vol. 11, p. 419–422, jun 1968.

[150] M. Sozeau, “Generalized rewriting.” https://coq.inria.fr/doc/V8.19.2/

refman/addendum/generalized-rewriting.html, 2023. [Online; accessed

Aug 7, 2024].

[151] A. W. Appel, “Efficient verified red-black trees,” 2011.

https://github.com/westes/flex
https://github.com/westes/flex
https://coq.inria.fr/doc/V8.19.2/refman/addendum/generalized-rewriting.html
https://coq.inria.fr/doc/V8.19.2/refman/addendum/generalized-rewriting.html

166

[152] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format.”

RFC 8259, Dec. 2017.

[153] J. B. Smith, Ocamllex and Ocamlyacc, pp. 193–211. Berkeley, CA: Apress,

2007.

[154] W. Bank, “United states annual GDP data [data file],” 2020.

[155] R. G. G. Cattell, Formalization and Automatic Derivation of Code Generators.

PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 1978.

[156] W. Yang, C.-W. Tsay, and J.-T. Chan, “On the applicability of the longest-

match rule in lexical analysis,” Computer Languages, Systems & Structures,

vol. 28, pp. 273–288, oct 2002.

[157] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers Principles,

Techniques & Tools. Pearson Education, 2007.

[158] T. Reps, ““Maximal-munch” tokenization in linear time,” ACM Transactions

on Programming Languages and Systems, vol. 20, p. 259–273, mar 1998.

[159] J. R. Levine, T. Mason, and D. Brown, Lex & yacc. ” O’Reilly Media, Inc.”,

1992.

[160] U. Trofimovich, “RE2C: A lexer generator based on lookahead-TDFA,” Software

Impacts, vol. 6, p. 100027, 2020.

[161] V. Laurikari, “NFAs with tagged transitions, their conversion to deterministic

automata and application to regular expressions,” in Proceedings Seventh In-

ternational Symposium on String Processing and Information Retrieval (SPIRE

2000), (USA), pp. 181–187, IEEE, 2000.

167

[162] L. Li, S. Sato, Q. Liu, and K. Taura, “Plex: Scaling parallel lexing with

backtrack-free prescanning,” in 2021 IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS), pp. 693–702, 2021.

[163] M. M. T. Chakravarty, “Lazy lexing is fast,” in Functional and Logic Pro-

gramming (A. Middeldorp and T. Sato, eds.), (Berlin, Heidelberg), pp. 68–84,

Springer, 1999.

[164] T. Nipkow, “Verified lexical analysis,” in Theorem Proving in Higher Order

Logics (J. Grundy and M. Newey, eds.), (Berlin, Heidelberg), pp. 1–15, Springer,

1998.

[165] J. B. Almeida, N. Moreira, D. Pereira, and S. M. de Sousa, “Partial deriva-

tive automata formalized in Coq,” in Implementation and Application of Au-

tomata (M. Domaratzki and K. Salomaa, eds.), (Berlin, Heidelberg), pp. 59–68,

Springer, 2011.

[166] F. Pottier, “Depth-First Search and Strong Connectivity in Coq,” in Vingt-

sixièmes journées francophones des langages applicatifs (JFLA 2015) (D. Baelde

and J. Alglave, eds.), (Le Val d’Ajol, France), Jan. 2015.

[167] P. Lammich and R. Neumann, “A framework for verifying depth-first search

algorithms,” in Proceedings of the 2015 Conference on Certified Programs and

Proofs, CPP ’15, (New York, NY, USA), p. 137–146, ACM, 2015.

[168] R. Chen and J.-J. Levy, “Readable semi-automatic formal proofs of Depth-First

Search in graphs using Why3.” Nov. 2015.

[169] J.-C. Filliâtre and A. Paskevich, “Why3 — where programs meet provers,”

168

in Programming Languages and Systems (M. Felleisen and P. Gardner, eds.),

(Berlin, Heidelberg), pp. 125–128, Springer, 2013.

[170] K. Sakaguchi, “Program extraction for mutable arrays,” Science of Computer

Programming, vol. 191, jun 2020.

[171] S. Ullrich and L. de Moura, “Counting immutable beans: reference counting

optimized for purely functional programming,” in Proceedings of the 31st Sym-

posium on Implementation and Application of Functional Languages, IFL ’19,

(New York, NY, USA), ACM, 2021.

[172] A. Reinking, N. Xie, L. de Moura, and D. Leijen, “Perceus: garbage free ref-

erence counting with reuse,” in Proceedings of the 42nd ACM SIGPLAN In-

ternational Conference on Programming Language Design and Implementation,

PLDI 2021, (New York, NY, USA), p. 96–111, ACM, 2021.

[173] A. Lorenzen, D. Leijen, and W. Swierstra, “FP2: fully in-place functional pro-

gramming,” Proceedings of the ACM on Programming Languages, vol. 7, aug

2023.

[174] P. Hudak and A. Bloss, “The aggregate update problem in functional program-

ming systems,” in Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium

on Principles of Programming Languages, POPL ’85, (New York, NY, USA),

p. 300–314, ACM, 1985.

[175] Q. Cao, L. Beringer, S. Gruetter, J. Dodds, and A. W. Appel, “VST-Floyd: A

separation logic tool to verify correctness of c programs,” Journal of Automated

Reasoning, vol. 61, p. 367–422, jun 2018.

169

[176] K. Mamouras, “Semantic foundations for deterministic dataflow and stream

processing,” in ESOP 2020 (P. Müller, ed.), vol. 12075 of LNCS, (Heidelberg),

pp. 394–427, Springer, 2020.

[177] D. Kozen, “Kleene algebra with tests,” ACM Transactions on Programming

Languages and Systems, vol. 19, no. 3, pp. 427–443, 1997.

[178] N. B. B. Grathwohl, D. Kozen, and K. Mamouras, “KAT + B!,” in Proceedings

of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Com-

puter Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sympo-

sium on Logic in Computer Science (LICS), CSL-LICS ’14, (New York, NY,

USA), pp. 44:1–44:10, ACM, 2014.

[179] K. Mamouras, Extensions of Kleene Algebra for Program Verification. PhD

thesis, Cornell University, Ithaca, NY, August 2015.

[180] K. Mamouras, “Equational theories of abnormal termination based on Kleene

algebra,” in FoSSaCS 2017 (J. Esparza and A. S. Murawski, eds.), vol. 10203

of LNCS, (Berlin, Heidelberg), pp. 88–105, Springer, 2017.

[181] A. Brüggemann-Klein and D. Wood, “Deterministic regular languages,” in

STACS 92, (Heidelberg), pp. 173–184, Springer, 1992.

[182] A. Brüggemann-Klein and D. Wood, “One-unambiguous regular languages,”

Infromation and Computation, vol. 140, no. 2, pp. 229–253, 1998.

[183] Y.-S. Han and D. Wood, “Generalizations of 1-deterministic regular languages,”

Information and Computation, vol. 206, no. 9, pp. 1117–1125, 2008. Special

Issue: 1st International Conference on Language and Automata Theory and

Applications (LATA 2007).

	Abstract
	Acknowledgments
	List of Illustrations
	List of Tables
	Introduction
	Temporal Logic
	Regular Expressions
	Contributions
	Online Monitoring for Metric Temporal Logic
	Regular Expressions with Lookarounds
	Tokenization using Thompson's Algorithm
	Other Related Contributions

	Online Monitoring for Metric Temporal Logic
	Introduction
	Metric Temporal Logic
	Lattices
	Syntax and Semantics

	The Monitoring Problem
	Monitors as Mealy Machines
	Monitor Combinators

	Extraction and Experiments
	Related Work

	Matching Regular Expressions with Lookarounds
	Introduction
	Overview of the Algorithm
	Lookaround Semantics
	Relationship to PCRE Semantics.

	Equational Reasoning
	Oracles for Lookaround Assertions
	Oracle Strings and Oracle Regular Expressions
	Choosing appropriate oracle valuations

	Purely Functional Matching of Oracle Expressions
	Operations on Marked Expressions
	Caching final and nullable for Marked Expressions
	Consuming Oracle Strings

	Efficient Layerwise Matching
	Computing Tapes
	Matching Algorithm
	Leftmost Longest Match Extraction

	Experiments
	Related Work

	Tokenization using Thompson's Algorithm
	Introduction
	Regular Expressions and Automata
	Non-deterministic Finite Automata

	Thompson's Construction
	Using Arrays to Represent the Transition Function

	Simulating NFAs using Depth-First Search
	Depth-First Search

	Maximal Munch Tokenization
	Pre-computing results of Depth-First Search

	Experimental Results
	Related Work

	Conclusion
	Future Work

	Bibliography

